Results 191 to 200 of about 507,348 (396)

Germanane Quantum Dots Promote Metabolic Reprogramming of Immune Cells Toward Regulatory T Cells and Suppress Inflammation In Vitro and In Vivo

open access: yesAdvanced Functional Materials, EarlyView.
Metabolic changes in immune cells direct the phenotype and function of the host immune system. Smart nanomaterials must target metabolic pathways to direct immune cell fate. This study reports the fabrication and first application of germanane quantum dots (GeHQDs) to modulate inflammation in vitro and in vivo.
Abhay Srivastava   +7 more
wiley   +1 more source

Electrochemically Driven Dissipative Growth of Affinity Hydrogels for Bioresponsive Interfaces

open access: yesAdvanced Functional Materials, EarlyView.
Voltage pulses drive the growth and reinforcement of hydrogel films under dissipative conditions. This biocompatible strategy enables efficient integration of affinity ligands into the hydrogel matrix, enhancing the selective capture of growth factors and allowing precise temporal control over their release, making them well‐suited as adaptive ...
Roberto Baretta, Marco Frasconi
wiley   +1 more source

Living Liquid Metal Composites Embedded with Electrogenic Endospores for Next‐Generation Bioelectronics

open access: yesAdvanced Functional Materials, EarlyView.
A new class of living liquid metal composites is introduced, embedding Bacillus subtilis endospores into eutectic gallium–indium (EGaIn). The spores enhance droplet coalescence, strengthen interfacial conductivity, and provide on‐demand electrogenic functionality after germination. The composites exhibit high conductivity, self‐healing, patternability,
Maryam Rezaie, Yang Gao, Seokheun Choi
wiley   +1 more source

MPI‐Guided Photothermal Therapy of Prostate Cancer Using Stem Cell Delivery of Magnetotheranostic Nanoflowers

open access: yesAdvanced Functional Materials, EarlyView.
Tumor‐tropic human mesenchymal stem cells (hMSCs) were used as delivery vehicles for magnetotheranostic gold–iron oxide nanoflowers. Magnetic particle imaging of the iron component demonstrated widespread intratumoral distribution and sustained retention in contrast to injection of naked nanoflowers.
Behnaz Ghaemi   +7 more
wiley   +1 more source

From In‐Silico Optimized Microfabrication to Experimental Validation: Engineering a Tridimensional Epi‐Intraneural Interface

open access: yesAdvanced Functional Materials, EarlyView.
An epi‐intraneural interface is developed through in silico optimization and a novel tridimensional microfabrication pipeline. The device integrates penetrating and epineural contacts on a flexible substrate. Mechanical, electrochemical, and in vivo testing in rat and pig reveal robust implantation, low‐threshold activation, and site‐dependent ...
Federico Ciotti   +14 more
wiley   +1 more source

INFRARED DIODE LASER IN LOW REACTIVE-LEVEL LASER THERAPY (LLLT) FOR KNEE OSTEOARTHROSIS

open access: diamond, 1991
M. A. Trelles   +4 more
openalex   +2 more sources

High‐Resolution Characterization of Protein‐Conjugated, mRNA‐Loaded Lipid Nanoparticles by Analytical Ultracentrifugation

open access: yesAdvanced Functional Materials, EarlyView.
Lipid nanoparticles containing messenger RNA are characterized by sedimentation velocity analytical ultracentrifugation using UltraScan's new Custom Grid algorithm to provide multi‐dimensional distributions for partial specific volume (particle density), molar mass, sedimentation, diffusion, and hydrodynamic radius.
Sophia Bird   +8 more
wiley   +1 more source

Cold Quad‐Modal Nanocomplex for Precise and Quantitative In Vivo Stem Cell Tracking

open access: yesAdvanced Functional Materials, EarlyView.
Multimodal albumin–bismuth sulfide–superparamagnetic iron oxide (ABS) nanocomplexes are developed for stem cell tracking across four different imaging modalities: MRI, MPI, MSOT, and CT. Combining its flexibility with high sensitivity, this quad‐modal imaging agent enables a robust quantification of ABS‐labeled stem cells in vivo.
Ali Shakeri‐Zadeh   +4 more
wiley   +1 more source

Laser‐Microscribed Glass Enables Surface‐Microfluidics‐Facilitated, Affordable, Rapid Cancer Diagnosis

open access: yesAdvanced Functional Materials, EarlyView.
A transparent, laser‐microscribed glass platform enables cancer diagnosis within 1 h—much faster than histology, which takes days, and free from the chemical or contrast risks of MRI or CT scans. The antibody‐functionalized rough glass surface captures viable cancer cells directly from suspension, allowing instant optical readout and offering a rapid ...
Anish Pal   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy