Results 181 to 190 of about 115,045 (334)

Senescent Synovial Intimal Fibroblasts Aggravate Osteoarthritis by Regulating Macrophage Polarization and Chondrocyte Phenotype Through ANGPTL4‐α5β1 Axis

open access: yesAdvanced Science, EarlyView.
Senescent synovial intimal fibroblasts (SIF) are identified as key drivers of osteoarthritis. They promote M1 macrophage polarization and cartilage degeneration via the ANGPTL4–α5β1 axis, regulated by transcription factors EGR1 and ATF3. Pharmacological inhibition of this pathway alleviates disease, revealing SIF senescence as a promising therapeutic ...
Muhai Deng   +7 more
wiley   +1 more source

STATUS OF TRIBOLOGICAL SYSTEM «VCH50 - MOTOR OIL - AO20-1» IN THE CONDITIONS OF INSUFFICIENT LUBRICATION

open access: diamond, 2017
Вадим Іванович Кубіч   +2 more
openalex   +1 more source

Microgel‐Based Hierarchical Porous Hydrogel Patch with Adhesion and Resilience for Myocardial Infarction

open access: yesAdvanced Science, EarlyView.
This study develops a hierarchically porous hydrogel patch strategy (HPMP), based on gas‐shearing microfluidics and an aqueous two‐phase system to fabricate porous microgels as microgel‐based bioinks. The porous microgels with controllable porous structure exhibit excellent cellular behavior.
Ziyang Liu   +13 more
wiley   +1 more source

Biomimetic Membrane Interface Technologies for Detection and Isolation of CTCs and EVs: Advances and Opportunities in Liquid Biopsy

open access: yesAdvanced Science, EarlyView.
Biomimetic membrane interface engineering constructs functionalized detection platforms by integrating natural cell membranes, synthetic lipids, or hybrid membranes. This strategy effectively reduces background interference and enables efficient target capture and analysis, showing broad applications in circulating tumor cell separation, extracellular ...
Duo Liu   +8 more
wiley   +1 more source

Resilient Calvarial Bone Marrow Supports Retinal Repair in Type 2 Diabetes

open access: yesAdvanced Science, EarlyView.
Skull bone (calvarium) marrow in diabetic mice stay structurally intact and keeps making blood cells, unlike the bone marrow of the leg bones. The skull marrow is exposed to cerebrospinal fluid (CSF), which contains protective molecules called oxysterols.
Bright Asare‐Bediako   +16 more
wiley   +1 more source

Home - About - Disclaimer - Privacy