Results 31 to 40 of about 1,424 (225)

Sums of Balancing and Lucas-Balancing numbers with binomial coefficients

open access: hybridInternational Journal of Mathematical Analysis, 2018
Robert Frontczak
openalex   +2 more sources

Almost balancers, almost cobalancers, almost Lucas-balancers and almost Lucas-cobalancers [PDF]

open access: yesNotes on Number Theory and Discrete Mathematics, 2023
In this work, the general terms of almost balancers, almost cobalancers, almost Lucas-balancers and almost Lucas-cobalancers of first and second type are determined in terms of balancing and Lucas-balancing numbers.
Ahmet Tekcan, Esra Zeynep Türkmen
doaj   +1 more source

Period of balancing numbers modulo product of consecutive Lucas-balancing numbers

open access: bronzeMATHEMATICA, 2018
Bijan Kumar Patel   +2 more
openalex   +2 more sources

Some new identities of a type of generalized numbers involving four parameters

open access: yesAIMS Mathematics, 2022
This article deals with a Horadam type of generalized numbers involving four parameters. These numbers generalize several celebrated numbers in the literature such as the generalized Fibonacci, generalized Lucas, Fibonacci, Lucas, Pell, Pell-Lucas ...
Waleed Mohamed Abd-Elhameed   +2 more
doaj   +1 more source

The Solution of a System of Higher-Order Difference Equations in Terms of Balancing Numbers

open access: yesPan-American Journal of Mathematics, 2023
In this paper, we are interested in the closed-form solution of the following system of nonlinear difference equations of higher order, un+1 = 1/34-vn-m , vn+1 = 1/34-un-m, n, m ∈ N0, and the initial values u-j and v-j , j∈{0, 1, ..., m} are real numbers
Ahmed Ghezal, Imane Zemmouri
doaj   +1 more source

Exact divisibility by powers of the integers in the Lucas sequence of the first kind

open access: yesAIMS Mathematics, 2020
Lucas sequence of the first kind is an integer sequence $(U_n)_{n\geq0}$ which depends on parameters $a,b\in\mathbb{Z}$ and is defined by the recurrence relation $U_0=0$, $U_1=1$, and $U_n=aU_{n-1}+bU_{n-2}$ for $n\geq2$. In this article, we obtain exact
Kritkhajohn Onphaeng   +1 more
doaj   +1 more source

Fascinating Number Sequences from Fourth Order Difference Equation Via Quaternion Algebras

open access: yesDiscussiones Mathematicae - General Algebra and Applications, 2021
The balancing and Lucas-balancing numbers are solutions of second order recurrence relations. A linear combination of these numbers can also be obtained as solutions of a fourth order recurrence relation.
Patra Asim
doaj   +1 more source

Solutions of the Diophantine Equations Br=Js+Jt and Cr=Js+Jt

open access: yesJournal of Mathematics, 2023
Let Brr≥0, Jrr≥0, and Crr≥0 be the balancing, Jacobsthal, and Lucas balancing numbers, respectively. In this paper, the diophantine equations Br=Js+Jt and Cr=Js+Jt are completely solved.
Ahmed Gaber, Mohiedeen Ahmed
doaj   +1 more source

On Balancing Quaternions and Lucas-Balancing Quaternions

open access: yesDiscussiones Mathematicae - General Algebra and Applications, 2021
In this paper we define and study balancing quaternions and Lucas-balancing quaternions. We give the generating functions, matrix generators and Binet formulas for these numbers. Moreover, the well-known properties e.g. Catalan, d’ Ocagne identities have
Bród Dorota
doaj   +1 more source

Home - About - Disclaimer - Privacy