Sums of Balancing and Lucas-Balancing numbers with binomial coefficients
Robert Frontczak
openalex +2 more sources
Almost balancers, almost cobalancers, almost Lucas-balancers and almost Lucas-cobalancers [PDF]
In this work, the general terms of almost balancers, almost cobalancers, almost Lucas-balancers and almost Lucas-cobalancers of first and second type are determined in terms of balancing and Lucas-balancing numbers.
Ahmet Tekcan, Esra Zeynep Türkmen
doaj +1 more source
Period of balancing numbers modulo product of consecutive Lucas-balancing numbers
Bijan Kumar Patel +2 more
openalex +2 more sources
Some new identities of a type of generalized numbers involving four parameters
This article deals with a Horadam type of generalized numbers involving four parameters. These numbers generalize several celebrated numbers in the literature such as the generalized Fibonacci, generalized Lucas, Fibonacci, Lucas, Pell, Pell-Lucas ...
Waleed Mohamed Abd-Elhameed +2 more
doaj +1 more source
Generalization of Cassini formulas for balancing and Lucas-balancing numbers
Prasanta Kumar Ray, Kaberi Parida
openalex +2 more sources
The Solution of a System of Higher-Order Difference Equations in Terms of Balancing Numbers
In this paper, we are interested in the closed-form solution of the following system of nonlinear difference equations of higher order, un+1 = 1/34-vn-m , vn+1 = 1/34-un-m, n, m ∈ N0, and the initial values u-j and v-j , j∈{0, 1, ..., m} are real numbers
Ahmed Ghezal, Imane Zemmouri
doaj +1 more source
Exact divisibility by powers of the integers in the Lucas sequence of the first kind
Lucas sequence of the first kind is an integer sequence $(U_n)_{n\geq0}$ which depends on parameters $a,b\in\mathbb{Z}$ and is defined by the recurrence relation $U_0=0$, $U_1=1$, and $U_n=aU_{n-1}+bU_{n-2}$ for $n\geq2$. In this article, we obtain exact
Kritkhajohn Onphaeng +1 more
doaj +1 more source
Fascinating Number Sequences from Fourth Order Difference Equation Via Quaternion Algebras
The balancing and Lucas-balancing numbers are solutions of second order recurrence relations. A linear combination of these numbers can also be obtained as solutions of a fourth order recurrence relation.
Patra Asim
doaj +1 more source
Solutions of the Diophantine Equations Br=Js+Jt and Cr=Js+Jt
Let Brr≥0, Jrr≥0, and Crr≥0 be the balancing, Jacobsthal, and Lucas balancing numbers, respectively. In this paper, the diophantine equations Br=Js+Jt and Cr=Js+Jt are completely solved.
Ahmed Gaber, Mohiedeen Ahmed
doaj +1 more source
On Balancing Quaternions and Lucas-Balancing Quaternions
In this paper we define and study balancing quaternions and Lucas-balancing quaternions. We give the generating functions, matrix generators and Binet formulas for these numbers. Moreover, the well-known properties e.g. Catalan, d’ Ocagne identities have
Bród Dorota
doaj +1 more source

