Results 21 to 30 of about 10,580,440 (338)

Exact divisibility by powers of the integers in the Lucas sequences of the first and second kinds

open access: yesAIMS Mathematics, 2021
Lucas sequences of the first and second kinds are, respectively, the integer sequences $ (U_n)_{n\geq0} $ and $ (V_n)_{n\geq0} $ depending on parameters $ a, b\in\mathbb{Z} $ and defined by the recurrence relations $ U_0 = 0 $, $ U_1 = 1 $, and $ U_n ...
Kritkhajohn Onphaeng   +1 more
doaj   +1 more source

Average Case Error Estimates of the Strong Lucas Test [PDF]

open access: yesarXiv.org, 2023
Reliable probabilistic primality tests are fundamental in public-key cryptography. In adversarial scenarios, a composite with a high probability of passing a specific primality test could be chosen.
Semira Einsele, Kenneth G. Paterson
semanticscholar   +1 more source

The p-Frobenius and p-Sylvester numbers for Fibonacci and Lucas triplets. [PDF]

open access: yesMathematical biosciences and engineering : MBE, 2022
In this paper we study a certain kind of generalized linear Diophantine problem of Frobenius. Let $ a_1, a_2, \dots, a_l $ be positive integers such that their greatest common divisor is one.
T. Komatsu, Ha Ying
semanticscholar   +1 more source

Exact divisibility by powers of the integers in the Lucas sequence of the first kind

open access: yesAIMS Mathematics, 2020
Lucas sequence of the first kind is an integer sequence $(U_n)_{n\geq0}$ which depends on parameters $a,b\in\mathbb{Z}$ and is defined by the recurrence relation $U_0=0$, $U_1=1$, and $U_n=aU_{n-1}+bU_{n-2}$ for $n\geq2$. In this article, we obtain exact
Kritkhajohn Onphaeng   +1 more
doaj   +1 more source

Sums of Pell/Lucas Polynomials and Fibonacci/Lucas Numbers

open access: yesMathematics, 2022
Seven infinite series involving two free variables and central binomial coefficients (in denominators) are explicitly evaluated in closed form. Several identities regarding Pell/Lucas polynomials and Fibonacci/Lucas numbers are presented as consequences.
Dongwei Guo, Wenchang Chu
openaire   +2 more sources

Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences

open access: yesSakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2023
In this paper, we define bi-periodic (p,q)-Fibonacci and bi-periodic (p,q)-Lucas sequences, which generalize Fibonacci type, Lucas type, bi-periodic Fibonacci type and bi-periodic Lucas type sequences, using recurrence relations of (p,q)-Fibonacci and (p,
Yasemin Taşyurdu   +1 more
doaj   +1 more source

On the k-Fibonacci and k-Lucas spinors

open access: yesNotes on Number Theory and Discrete Mathematics, 2023
In this paper, we introduce a new family of sequences called the k-Fibonacci and k-Lucas spinors. Starting with the Binet formulas we present their basic properties, such as Cassini’s identity, Catalan’s identity, d’Ocagne’s identity, Vajda’s identity ...
Munesh Kumari, K. Prasad, R. Frontczak
semanticscholar   +1 more source

A generalization of Lucas sequence and associated identities

open access: yesBoletim da Sociedade Paranaense de Matemática, 2022
In this paper, we attempt to generalize Lucas sequence by generating certain number of sequences whose terms are obtained by adding the last two generated terms of the preceding sequence.
Neeraj Kumar Paul, Helen K. Saikia
doaj   +1 more source

Formulae of the Frobenius number in relatively prime three Lucas numbers [PDF]

open access: yesSongklanakarin Journal of Science and Technology (SJST), 2020
In this paper, we find the explicit formulae of the Frobenius number for numerical semigroups generated by relatively prime three Lucas numbers 2 , L L i i and Lil  for given integers i ≥ 3, l ≥ 4 .
Ratchanok Bokaew   +2 more
doaj   +1 more source

Almost balancers, almost cobalancers, almost Lucas-balancers and almost Lucas-cobalancers

open access: yesNotes on Number Theory and Discrete Mathematics, 2023
In this work, the general terms of almost balancers, almost cobalancers, almost Lucas-balancers and almost Lucas-cobalancers of first and second type are determined in terms of balancing and Lucas-balancing numbers.
A. Tekcan, Esra Zeynep Türkmen
semanticscholar   +1 more source

Home - About - Disclaimer - Privacy