Results 21 to 30 of about 10,886,718 (351)
Average Case Error Estimates of the Strong Lucas Test [PDF]
Reliable probabilistic primality tests are fundamental in public-key cryptography. In adversarial scenarios, a composite with a high probability of passing a specific primality test could be chosen.
Semira Einsele, Kenneth G. Paterson
semanticscholar +1 more source
On Mixed 𝐵-Concatenations of Pell and Pell–Lucas Numbers which are Pell Numbers [PDF]
Let (𝑃𝑛)𝑛≥0 and (𝑄𝑛)𝑛≥0 be the Pell and Pell–Lucas sequences. Let 𝑏 be a positive integer such that 𝑏 ≥ 2. In this paper, we prove that the following two Diophantine equations 𝑃𝑛 = 𝑏𝑑𝑃𝑚 + 𝑄𝑘 and 𝑃𝑛 = 𝑏𝑑𝑄𝑚 + 𝑃𝑘 with 𝑑, the number of digits of 𝑃𝑘 or 𝑄𝑘 in ...
Kouessi Norbert Ad'edji +1 more
semanticscholar +1 more source
Exact divisibility by powers of the integers in the Lucas sequence of the first kind
Lucas sequence of the first kind is an integer sequence $(U_n)_{n\geq0}$ which depends on parameters $a,b\in\mathbb{Z}$ and is defined by the recurrence relation $U_0=0$, $U_1=1$, and $U_n=aU_{n-1}+bU_{n-2}$ for $n\geq2$. In this article, we obtain exact
Kritkhajohn Onphaeng +1 more
doaj +1 more source
Some new properties of hyperbolic k-Fibonacci and k-Lucas octonions [PDF]
The aim of this paper is to establish some novel identities for hyperbolic k-Fibonacci octonions and k-Lucas octonions. We prove these properties using the identities of k-Fibonacci and k-Lucas numbers, which we determined previously.
A. D. Godase
doaj +1 more source
The p-Frobenius and p-Sylvester numbers for Fibonacci and Lucas triplets. [PDF]
In this paper we study a certain kind of generalized linear Diophantine problem of Frobenius. Let $ a_1, a_2, \dots, a_l $ be positive integers such that their greatest common divisor is one.
T. Komatsu, Ha Ying
semanticscholar +1 more source
Incomplete Tribonacci–Lucas Numbers and Polynomials [PDF]
In this paper, we define Tribonacci-Lucas polynomials and present Tribonacci-Lucas numbers and polynomials as a binomial sum. Then, we introduce incomplete Tribonacci-Lucas numbers and polynomials. In addition we derive recurrence relations, some properties and generating functions of these numbers and polynomials. Also, we find the generating function
Yilmaz, Nazmiye, Taskara, Necati
openaire +2 more sources
In this short paper I show how it is related to other famous unsolved problems in prime number theory. In order to do this, I formulate the main hypothetical result of this paper - a useful upper bound conjecture (Conjecture 3.), describing one aspect of
Saidak, F.
core +1 more source
On the k-Fibonacci and k-Lucas spinors
In this paper, we introduce a new family of sequences called the k-Fibonacci and k-Lucas spinors. Starting with the Binet formulas we present their basic properties, such as Cassini’s identity, Catalan’s identity, d’Ocagne’s identity, Vajda’s identity ...
Munesh Kumari, K. Prasad, R. Frontczak
semanticscholar +1 more source
On square Tribonacci Lucas numbers
The Tribonacci-Lucas sequence {Sn}{Sn} is defined by the recurrence relation Sn+3=Sn+2+Sn+1+SnSn+3=Sn+2+Sn+1+Sn with S0=3, S1=1, S2=3.S0=3, S1=1, S2=3. In this note, we show that 11 is the only perfect square in Tribonacci-Lucas sequence for n≢1(mod32)n≢1(mod32) and n≢17(mod96).n≢17(mod96).
openaire +3 more sources
One of the most challenging aspects of obtaining detailed and accurate land-use and land-cover (LULC) maps is the availability of representative field data for training and validation.
Babak Ghassemi +5 more
semanticscholar +1 more source

