Results 31 to 40 of about 625,251 (324)
{"references": ["1.\tR. Sivaraman, Number Triangles and Metallic Ratios, International Journal of Engineering and Computer Science, Volume 10, Issue 8, pp. 25365 \u2013 25369. 2.\tR. Sivaraman, Generalized Pascal's Triangle and Metallic Ratios, International Journal of Research, Volume 9, Issue 7, pp. 179 \u2013 184. 3.\tR.
openaire +1 more source
The present work aims to introduce and study the Gaussian Bronze Lucas number sequence. Firstly, we define Gaussian Bronze Lucas numbers by extending the Bronze Lucas numbers. Then, we find the Binet formula and generating function for this number sequence. We also investigate some sum formulas and matrices related to the Gaussian Bronze Lucas numbers.
openaire +1 more source
On the intersections of Fibonacci, Pell, and Lucas numbers [PDF]
We describe how to compute the intersection of two Lucas sequences of the forms $\{U_n(P,\pm 1) \}_{n=0}^{\infty}$ or $\{V_n(P,\pm 1) \}_{n=0}^{\infty}$ with $P\in\mathbb{Z}$ that includes sequences of Fibonacci, Pell, Lucas, and Lucas-Pell numbers.
Bilu +13 more
core +2 more sources
On Hybrid Hyper k-Pell, k-Pell–Lucas, and Modified k-Pell Numbers
Many different number systems have been the topic of research. One of the recently studied number systems is that of hybrid numbers, which are generalizations of other number systems.
Elen Viviani Pereira Spreafico +2 more
doaj +1 more source
q-Congruences, with applications to supercongruences and the cyclic sieving phenomenon
We establish a supercongruence conjectured by Almkvist and Zudilin, by proving a corresponding $q$-supercongruence. Similar $q$-supercongruences are established for binomial coefficients and the Ap\'{e}ry numbers, by means of a general criterion ...
Gorodetsky, Ofir
core +1 more source
Incomplete Bivariate Fibonacci and Lucas 𝑝-Polynomials
We define the incomplete bivariate Fibonacci and Lucas 𝑝-polynomials. In the case 𝑥=1, 𝑦=1, we obtain the incomplete Fibonacci and Lucas 𝑝-numbers. If 𝑥=2, 𝑦=1, we have the incomplete Pell and Pell-Lucas 𝑝-numbers.
Dursun Tasci +2 more
doaj +1 more source
Series associated with harmonic numbers, Fibonacci numbers and central binomial coefficients $binom{2n}{n}$ [PDF]
We find various series that involve the central binomial coefficients $binom{2n}{n}$, harmonic numbers and Fibonacci numbers. Contrary to the traditional hypergeometric function _pF_q approach, our method utilizes a straightforward transformation to ...
Segun Olofin Akerele +1 more
doaj +1 more source
On some series involving the binomial coefficients $binom{3n}{n}$ [PDF]
Using a simple transformation, we obtain much simpler forms for some series involving binomial coefficients $binom{3n}{n}$ derived by Necdet Batir. New evaluations are given and connections with Fibonacci numbers and the golden ratio are established ...
Kunle Adegoke +2 more
doaj +1 more source
Lucas non-Wieferich primes in arithmetic progressions and the abc conjecture
We prove the lower bound for the number of Lucas non-Wieferich primes in arithmetic progressions. More precisely, for any given integer k≥2k\ge 2, there are ≫logx\gg \hspace{0.25em}\log x Lucas non-Wieferich primes p≤xp\le x such that p≡±1(modk)p\equiv ...
Anitha K. +2 more
doaj +1 more source
Lucas' theorem: its generalizations, extensions and applications (1878--2014) [PDF]
In 1878 \'E. Lucas proved a remarkable result which provides a simple way to compute the binomial coefficient ${n\choose m}$ modulo a prime $p$ in terms of the binomial coefficients of the base-$p$ digits of $n$ and $m$: {\it If $p$ is a prime, $n=n_0 ...
Meštrović, Romeo
core

