Results 11 to 20 of about 242,259 (303)
Integers represented by Lucas sequences
Abstract In this paper, we study the sets of integers which are n-th terms of Lucas sequences. We establish lower- and upper bounds for the size of these sets. These bounds are sharp for n sufficiently large. We also develop bounds on the growth order of the terms of Lucas sequences that are independent of the parameters of the sequence ...
Lajos Hajdu, R. Tijdeman
openalex +3 more sources
Blocks within the period of Lucas sequence
In this paper, we consider the periodic nature of the sequence of Lucas numbers L_n defined by the recurrence relation L_n= L_(n-1)+L_(n-2); for all n≥2; with initial condition L_0=2 and L_1=1.
Rima P. Patel, Dr. Devbhadra V. Shah
doaj +1 more source
Encryption and Decryption of the Data by Using the Terms of the Lucas Series
The sequence, whose initial condition is 2 and 1, obtained by summing the two terms preceding it, is called the Lucas sequence. The terms of this series continue as 2, 1, 3, 4, 7, 11, 18, 29, ... respectively. The features of the Lucas sequence have been
Mehmet Duman, Merve Güney Duman
doaj +1 more source
Lucas difference sequence spaces defined by Orlicz function in 2-normed spaces
In this article, we introduce new sequence spaces defined via an Orlicz function within the framework of a 2-normed space and incorporating the Lucas difference matrix and its associated matrix domain.
Cai Qing-Bo+3 more
doaj +2 more sources
On the discriminator of Lucas sequences [PDF]
We consider the family of Lucas sequences uniquely determined by $U_{n+2}(k)=(4k+2)U_{n+1}(k) -U_n(k),$ with initial values $U_0(k)=0$ and $U_1(k)=1$ and $k\ge 1$ an arbitrary integer. For any integer $n\ge 1$ the discriminator function $\mathcal{D}_k(n)$ of $U_n(k)$ is defined as the smallest integer $m$ such that $U_0(k),U_1(k),\ldots,U_{n-1}(k)$ are
Bernadette Faye+5 more
openaire +4 more sources
Symmetric and generating functions of generalized (p,q)-numbers
In this paper, we first define new generalization for (p,q)-numbers. Considering these sequence, we give Binet's formulas and generating functions of (p,q)-Fibonacci numbers, (p,q)-Lucas numbers, (p,q)-Pell numbers, (p,q)-Pell Lucas numbers, (p,q ...
Nabiha Saba+2 more
doaj +1 more source
On Generalized Jacobsthal and Jacobsthal–Lucas Numbers
Jacobsthal numbers and Jacobsthal–Lucas numbers are some of the most studied special integer sequences related to the Fibonacci numbers. In this study, we introduce one parameter generalizations of Jacobsthal numbers and Jacobsthal–Lucas numbers.
Bród Dorota, Michalski Adrian
doaj +1 more source
A Note on Two Fundamental Recursive Sequences
In this note, we establish some general results for two fundamental recursive sequences that are the basis of many well-known recursive sequences, as the Fibonacci sequence, Lucas sequence, Pell sequence, Pell-Lucas sequence, etc.
Farhadian Reza, Jakimczuk Rafael
doaj +1 more source
On Matrix Sequence of modified Tribonacci-Lucas Numbers
In this paper, we define modified Tribonacci-Lucas matrix sequence and investigate its properties.
Erkan Taşdemir+2 more
doaj +1 more source
Elliptic Solutions of Dynamical Lucas Sequences [PDF]
We study two types of dynamical extensions of Lucas sequences and give elliptic solutions for them. The first type concerns a level-dependent (or discrete time-dependent) version involving commuting variables. We show that a nice solution for this system is given by elliptic numbers. The second type involves a non-commutative version of Lucas sequences
Schlosser, Michael J., Yoo, Meesue
openaire +8 more sources