Results 21 to 30 of about 255,151 (329)
Exact divisibility by powers of the integers in the Lucas sequence of the first kind
Lucas sequence of the first kind is an integer sequence $(U_n)_{n\geq0}$ which depends on parameters $a,b\in\mathbb{Z}$ and is defined by the recurrence relation $U_0=0$, $U_1=1$, and $U_n=aU_{n-1}+bU_{n-2}$ for $n\geq2$. In this article, we obtain exact
Kritkhajohn Onphaeng +1 more
doaj +1 more source
On members of Lucas sequences which are products of factorials [PDF]
Here, we show that if $\{U_n\}_{n\ge 0}$ is a Lucas sequence, then the largest $n$ such that $|U_n|=m_1!m_2!\cdots m_k!$ with ...
Laishram, Shanta +2 more
core +2 more sources
Shifted powers in Lucas–Lehmer sequences [PDF]
We develop a general framework for finding all perfect powers in sequences derived by shifting non-degenerate quadratic Lucas-Lehmer binary recurrence sequences by a fixed integer. By combining this setup with bounds for linear forms in logarithms and results based upon the modularity of elliptic curves defined over totally real fields, we are able to ...
Michael A. Bennett +2 more
openalex +5 more sources
On the reciprocal products of generalized Fibonacci sequences
In this paper, we use the properties of error estimation and the analytic method to study the reciprocal products of the bi-periodic Fibonacci sequence, the bi-periodic Lucas sequence, and the mth-order linear recursive sequence.
Tingting Du, Zhengang Wu
doaj +1 more source
A method to decrease computation time for fourth order Lucas sequence [PDF]
The fourth order Lucas sequence is a linear recurrence relation related to quartic polynomial and based on Lucas function. This sequence had been used to develop the LUC4,6 cryptosystem.
Koo, Lee Feng +3 more
core +1 more source
On some new results for the generalised Lucas sequences
In this paper we introduce the functions which count the number of generalized Lucas and Pell-Lucas sequence terms not exceeding a given value x and, under certain conditions, we derive exact formulae (Theorems 3 and 4) and establish asymptotic limits ...
Andrica Dorin +2 more
doaj +1 more source
Identities relating six members of the Fibonacci family of sequences
In this paper, we prove several identities each relating a sum of products of three terms coming from different members of the Fibonacci family of sequences with a comparable sum whose terms come from three other sequences.
R. Frontczak, T. Goy, M. Shattuck
doaj +1 more source
Complex Factorizations of the Lucas Sequences via Matrix Methods
Firstly, we show a connection between the first Lucas sequence and the determinants of some tridiagonal matrices. Secondly, we derive the complex factorizations of the first Lucas sequence by computing those determinants with the help of Chebyshev ...
Honglin Wu
doaj +1 more source
On r-Jacobsthal and r-Jacobsthal-Lucas Numbers
Recently, Bród introduced a new Jacobsthal-type sequence which is called r-Jacobsthal sequence in current study. After defining the appropriate r-Jacobsthal–Lucas sequence for the r-Jacobsthal sequence, we obtain some properties of these two sequences ...
Bilgici Göksal, Bród Dorota
doaj +1 more source
Repdigits as difference of two Fibonacci or Lucas numbers
In the present study we investigate all repdigits which are expressed as a difference of two Fibonacci or Lucas numbers. We show that if $F_{n}-F_{m}$ is a repdigit, where $F_{n}$ denotes the $n$-th Fibonacci number, then $(n,m)\in \{(7,3),(9,1),(9,2 ...
P. Ray, K. Bhoi
doaj +1 more source

