Results 21 to 30 of about 255,151 (329)

Exact divisibility by powers of the integers in the Lucas sequence of the first kind

open access: yesAIMS Mathematics, 2020
Lucas sequence of the first kind is an integer sequence $(U_n)_{n\geq0}$ which depends on parameters $a,b\in\mathbb{Z}$ and is defined by the recurrence relation $U_0=0$, $U_1=1$, and $U_n=aU_{n-1}+bU_{n-2}$ for $n\geq2$. In this article, we obtain exact
Kritkhajohn Onphaeng   +1 more
doaj   +1 more source

On members of Lucas sequences which are products of factorials [PDF]

open access: yes, 2019
Here, we show that if $\{U_n\}_{n\ge 0}$ is a Lucas sequence, then the largest $n$ such that $|U_n|=m_1!m_2!\cdots m_k!$ with ...
Laishram, Shanta   +2 more
core   +2 more sources

Shifted powers in Lucas–Lehmer sequences [PDF]

open access: greenResearch in Number Theory, 2019
We develop a general framework for finding all perfect powers in sequences derived by shifting non-degenerate quadratic Lucas-Lehmer binary recurrence sequences by a fixed integer. By combining this setup with bounds for linear forms in logarithms and results based upon the modularity of elliptic curves defined over totally real fields, we are able to ...
Michael A. Bennett   +2 more
openalex   +5 more sources

On the reciprocal products of generalized Fibonacci sequences

open access: yesJournal of Inequalities and Applications, 2022
In this paper, we use the properties of error estimation and the analytic method to study the reciprocal products of the bi-periodic Fibonacci sequence, the bi-periodic Lucas sequence, and the mth-order linear recursive sequence.
Tingting Du, Zhengang Wu
doaj   +1 more source

A method to decrease computation time for fourth order Lucas sequence [PDF]

open access: yes, 2013
The fourth order Lucas sequence is a linear recurrence relation related to quartic polynomial and based on Lucas function. This sequence had been used to develop the LUC4,6 cryptosystem.
Koo, Lee Feng   +3 more
core   +1 more source

On some new results for the generalised Lucas sequences

open access: yesAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, 2021
In this paper we introduce the functions which count the number of generalized Lucas and Pell-Lucas sequence terms not exceeding a given value x and, under certain conditions, we derive exact formulae (Theorems 3 and 4) and establish asymptotic limits ...
Andrica Dorin   +2 more
doaj   +1 more source

Identities relating six members of the Fibonacci family of sequences

open access: yesKarpatsʹkì Matematičnì Publìkacìï, 2022
In this paper, we prove several identities each relating a sum of products of three terms coming from different members of the Fibonacci family of sequences with a comparable sum whose terms come from three other sequences.
R. Frontczak, T. Goy, M. Shattuck
doaj   +1 more source

Complex Factorizations of the Lucas Sequences via Matrix Methods

open access: yesJournal of Applied Mathematics, 2014
Firstly, we show a connection between the first Lucas sequence and the determinants of some tridiagonal matrices. Secondly, we derive the complex factorizations of the first Lucas sequence by computing those determinants with the help of Chebyshev ...
Honglin Wu
doaj   +1 more source

On r-Jacobsthal and r-Jacobsthal-Lucas Numbers

open access: yesAnnales Mathematicae Silesianae, 2023
Recently, Bród introduced a new Jacobsthal-type sequence which is called r-Jacobsthal sequence in current study. After defining the appropriate r-Jacobsthal–Lucas sequence for the r-Jacobsthal sequence, we obtain some properties of these two sequences ...
Bilgici Göksal, Bród Dorota
doaj   +1 more source

Repdigits as difference of two Fibonacci or Lucas numbers

open access: yesМатематичні Студії, 2021
In the present study we investigate all repdigits which are expressed as a difference of two Fibonacci or Lucas numbers. We show that if $F_{n}-F_{m}$ is a repdigit, where $F_{n}$ denotes the $n$-th Fibonacci number, then $(n,m)\in \{(7,3),(9,1),(9,2 ...
P. Ray, K. Bhoi
doaj   +1 more source

Home - About - Disclaimer - Privacy