Results 41 to 50 of about 248,402 (331)

A lucas based cryptosystem analog to the ElGamal cryptosystem and elliptic curve cryptosystem [PDF]

open access: yes, 2014
In this paper, a new cryptosystem will be developed which is analogue to ElGamal encryption scheme and based on Lucas sequence in the elliptic curve group over finite field. In this encryption scheme, an Elliptic curve Diffie-Hellman (ECDH) key agreement
Koo, Lee Feng   +3 more
core   +1 more source

Almost repdigits in balancing and Lucas-balancing sequences [PDF]

open access: yesNotes on Number Theory and Discrete Mathematics
In this paper, we define the notion of almost repdigit as a positive integer whose digits are all equal except for at most one digit, and we search all terms of the balancing and Lucas-balancing sequences which are almost repdigits.
Manasi K. Sahukar, Hussain Basha
doaj   +1 more source

On the Diophantine equation x^2+7^{alpha}.11^{beta}=y^n [PDF]

open access: yes, 2012
In this paper, we give all the solutions of the Diophantine equation x^2+7^{alpha}.11^{beta}=y^n, in nonnegative integers x, y, n>=3 with x and y coprime, except for the case when alpha.x is odd and beta is even.Comment: to appear in Miskolc Mathematical
Soydan, Gokhan
core   +2 more sources

Practical numbers in Lucas sequences [PDF]

open access: yesQuaestiones Mathematicae, 2018
A practical number is a positive integer n such that all the positive integers m ≤ n can be written as a sum of distinct divisors of n. Let (un)n≥0 be the Lucas sequence satisfying u0 = 0, u1 = 1, and un+2 = aun+1 + bun for all integers n ≥ 0, where a and b are fixed nonzero integers. Assume a(b + 1) even and a 2 + 4b > 0.
openaire   +3 more sources

On Bicomplex Jacobsthal-Lucas Numbers

open access: yesJournal of Mathematical Sciences and Modelling, 2020
In this study we introduced a sequence of bicomplex numbers whose coefficients are chosen from the sequence of Jacobsthal-Lucas numbers. We also present some identities about the known some fundamental identities such as the Cassini's, Catalan's and ...
Serpil Halıcı
doaj   +1 more source

Some properties of the generalized (p,q)- Fibonacci-Like number

open access: yesMATEC Web of Conferences, 2018
For the real world problems, we use some knowledge for explain or solving them. For example, some mathematicians study the basic concept of the generalized Fibonacci sequence and Lucas sequence which are the (p,q) – Fibonacci sequence and the (p,q ...
Suvarnamani Alongkot
doaj   +1 more source

Some Polynomial Sequence Relations

open access: yesMathematics, 2019
We give some polynomial sequence relations that are generalizations of the Sury-type identities. We provide two proofs, one based on an elementary identity and the other using the method of generating functions.
Chan-Liang Chung
doaj   +1 more source

On $k$-Fibonacci balancing and $k$-Fibonacci Lucas-balancing numbers

open access: yesKarpatsʹkì Matematičnì Publìkacìï, 2021
The balancing number $n$ and the balancer $r$ are solution of the Diophantine equation $$1+2+\cdots+(n-1) = (n+1)+(n+2)+\cdots+(n+r). $$ It is well known that if $n$ is balancing number, then $8n^2 + 1$ is a perfect square and its positive square root is
S.E. Rihane
doaj   +1 more source

Mersenne-Horadam identities using generating functions

open access: yesKarpatsʹkì Matematičnì Publìkacìï, 2020
The main object of the present paper is to reveal connections between Mersenne numbers $M_n=2^n-1$ and generalized Fibonacci (i.e., Horadam) numbers $w_n$ defined by a second order linear recurrence $w_n=pw_{n-1}+qw_{n-2}$, $n\geq 2$, with $w_0=a$ and ...
R. Frontczak, T.P. Goy
doaj   +1 more source

On New Polynomial Sequences Constructed to Each Vertex in an n-Gon

open access: yesDiscrete Dynamics in Nature and Society, 2022
In this work, we bring to light the properties of newly formed polynomial sequences at each vertex of Pell polynomial sequences placed clockwise at each vertex in the n-gon. We compute the relation among the polynomials with such vertices.
Abdul Hamid Ganie   +3 more
doaj   +1 more source

Home - About - Disclaimer - Privacy