Results 191 to 200 of about 32,712 (291)

Hyperbranched Interpenetrating Hydrogen Bond Network (HIHBN) Proton Exchange Membrane for Fuel Cells Above 220 °C

open access: yesAdvanced Functional Materials, EarlyView.
A novel polymer electrolyte membrane with a hyperbranched interpenetrating hydrogen bond network structure is developed. The unique structure of the hyperbranched polymer contributes to a high glass transition temperature exceeding 400 °C, enabling its operation at elevated temperatures for fuel cell applications.
Lingping Zeng   +10 more
wiley   +1 more source

A Strong and Water‐Retaining Biomass Adhesive Inspired by Tofu

open access: yesAdvanced Functional Materials, EarlyView.
Drawing inspiration from the formation mechanism of the traditional food tofu, a strong and water‐retaining adhesive is designed using the soybean meal (SM) oxidized by glucose oxidase (GOx) and calcium sulfate oligomer (CSO). This design strategy effectively addresses the conflicting requirements of water‐resistant bonding strength and water retention
Jiawei Shao   +8 more
wiley   +1 more source

High‐Entropy Liquid Metal Process for Transparent Ultrathin p‐Type Gallium Oxide

open access: yesAdvanced Functional Materials, EarlyView.
This work introduces a doping strategy for harvesting ultrathin Ga oxide layers using a multi‐elemental Ga‐based liquid metal alloy. The incorporation of trivalent In metal into the self‐limiting oxide formed on the alloy's surface is enabled by the existence of atomically dispersed Pt, Au, and Pd.
Laetitia Bardet   +14 more
wiley   +1 more source

Spectroelectrochemical Determination of Förster Radii for Triplet‐Polaron Quenching in Phosphorescent Organic Light‐Emitting Diodes

open access: yesAdvanced Functional Materials, EarlyView.
Phosphorescent OLEDs suffer from efficiency roll‐off due to triplet‐polaron quenching (TPQ). This study demonstrates for a large set of host‐guest combinations a spectroelectrochemical method to measure the absorption of charged molecules, enabling determining TPQ Förster radii (2.5–4 nm) from the spectral overlap.
Stan E. A. Jaspars   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy