Results 251 to 260 of about 32,712 (291)

High Thermoelectric Performance in Low‐Cost Cu8SiSxSe6‐x Argyrodite

open access: yesAdvanced Functional Materials, EarlyView.
This study discovers the great potential of Cu8SiSxSe6‐x argyrodites as new, low‐cost, Te‐free thermoelectric materials. The proposed defect scheme suppresses the phase transition, enhances the weighted mobility and optimizes the grain boundary contacts.
Taras Parashchuk   +7 more
wiley   +1 more source

Tuning D‐Band Center of Vanadium in Constructing Lattice‐Matched Coherent Heterostructure for Enhanced Sodium Storage

open access: yesAdvanced Functional Materials, EarlyView.
The coherent heterostructure and the strong stress field at the heterointerface upshift the d‐band center of vanadium toward the Fermi level, which effectively lowers the Na+ diffusion barrier, facilitates charge transfer and accelerates reaction kinetics.
Xuexia Song   +11 more
wiley   +1 more source

Ultrafast Energy Transfer Induced Lasing From a Coplanar Donor‐Acceptor‐Donor Molecule in a Microspherical Cavity

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a novel donor‐bridge‐acceptor‐bridge‐donor (D‐B‐A‐B‐D) molecular system, which shows near‐unity intramolecular excitation energy transfer (IET) from two identical energy donors to a coplanar acceptor. It enables a four‐level energy system for efficient lasing at the acceptor emission band in a microspherical cavity with a low lasing
Vishal Kumar   +6 more
wiley   +1 more source

“Writing” Crystal Phases in Amorphous Calcium Carbonate via Laser‐Induced Patterned Transformations

open access: yesAdvanced Functional Materials, EarlyView.
Laser‐induced crystallization enabling the patterning of amorphous calcium carbonate into various distinct phases is introduced. This approach provides spatial control over polymorph selection, both crystalline and amorphous, inspired by biomineralization pathways.
Hadar Shaked   +6 more
wiley   +1 more source

Optical Control of Ferroelectric Imprint in BiFeO3

open access: yesAdvanced Functional Materials, EarlyView.
Above‐bandgap irradiation at room temperature enables on‐demand optical control of defect‐driven built‐in electric fields in BiFeO₃ thin films, fabricated via scalable, chemical spray pyrolysis. These fields, otherwise “frozen‐in,” can cause severe device degradation, including non‐switchable polarization, dead layers near interfaces, and polarization ...
Haoze Zhang   +8 more
wiley   +1 more source

Regulating the Interphase Strain in High‐Entropy Oxide Thin Films – An Approach to Attaining Giant Energy Storage Capability under Moderate Electric Fields

open access: yesAdvanced Functional Materials, EarlyView.
This work demonstrates an interphase strain engineering strategy to regulate capacitive energy storage performance in high‐entropy oxide thin films. Through introducing pyrochlore nanocolumns, the polarization response of perovskite unit cells is strengthened, yielding recoverable energy densities up to 93 J cm−3 with an efficiency of 83% under ...
Hao Luo   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy