Results 101 to 110 of about 50,604 (268)
Numerical 3+1 general relativistic magnetohydrodynamics: a local
characteristic approach
, 2005 We present a general procedure to solve numerically the general relativistic
magnetohydrodynamics (GRMHD) equations within the framework of the 3+1
formalism. The work reported here extends our previous investigation in general
relativistic hydrodynamics Blandford R. D., Blandford R. D., Bocquet M., Font J. A., Font J. A., Jose A. Font, Jose A. Pons, Jose M. Ibanez, Jose M. Marti, Juan A. Miralles, Kozlowski M., Luis Anton, Marti J. M., Michel F., Olindo Zanotti, Penrose R., Pons J. A., von Zeipel H., Yokosawa M., Yokosawa M. +19 morecore +1 more sourceGlobal Evolution, Energetics, and Origins of Auroral Streamers
Geophysical Research Letters, Volume 52, Issue 12, 28 June 2025.Abstract
An auroral streamer—a usually meridionally aligned, arc‐like feature that extend across the auroral oval. We performed a high‐resolution global magnetohydrodynamic simulation to characterize the evolution of streamers and their coupling to magnetotail drivers. The results show that streamers, which are a consequence of magnetotail flow bursts, Ziyi Yang, Binzheng Zhang, William Lotko, Jiuhou Lei +3 morewiley +1 more sourceField‐Aligned Currents and Auroral Precipitation During the Terrestrial Alfvén Wing State
Geophysical Research Letters, Volume 52, Issue 12, 28 June 2025.Abstract
When sub‐Alfvénic (Alfvén Mach number MA< ${\mathrm{M}}_{A}< $1) plasmas impact Earth, Alfvén wings (AWs) develop. A Multiscale Atmosphere Geospace Environment simulation of the April 2023 storm, validated by Active Magnetosphere and Planetary Electrodynamics Response Experiment data, reveals the field‐aligned‐current (FAC) generation ...B. L. Burkholder, L.‐J. Chen, D. Lin, S. K. Vines, K. A. Sorathia, C. F. Bowers +5 morewiley +1 more sourceSolar Nebula Magnetohydrodynamics [PDF]
, 2000 The dynamical state of the solar nebula depends critically upon whether or not the gas is magnetically coupled. The presence of a subthermal field will cause laminar flow to break down into turbulence. Magnetic coupling, in turn, depends upon the ionization fraction of the gas.Balbus, S, Hawley, Jopenaire +5 more sourcesMagnetohydrodynamic experiments on cosmic magnetic fields
, 2008 It is widely known that cosmic magnetic fields, i.e. the fields of planets,
stars, and galaxies, are produced by the hydromagnetic dynamo effect in moving
electrically conducting fluids.Alemany, Aubert, Aubert, Avalos-Zuñiga, Babcock, Balbus, Balbus, Balbus, Beck, Berhanu, Bevir, Blackman, Bourgoin, Bourgoin, Braithwaite, Brandenburg, Brandenburg, Brito, Brunhes, Bullard, Busse, Busse, Busse, Busse, Busse, Cardin, Carlson, Chandrasekhar, Christensen, Christensen, Christensen, Christensen, Colgate, Colgate, Colgate, Collins, Connerney, Cowling, Denisov, Dobler, Dormy, Dubrulle, Dudley, Dziourkevitch, Fauve, Fearn, Fischer, Forest, Forest, Frick, Fuchs, Gailitis, Gailitis, Gailitis, Gailitis, Gailitis, Gailitis, Gailitis, Gailitis, Gailitis, Gailitis, Gailitis, Gailitis, Gailitis, Gailitis, Gailitis, Gans, Gekelman, Giesecke, Giesecke, Gissinger, Glassmeier, Glassmeier, Glatzmaier, Govoni, Grasso, Guermond, Hale, Harder, Hawley, Hawley, Herzenberg, Hollerbach, Hollerbach, Hollerbach, Hoyng, Inglis, Iskakov, Ivers, Ji, Ji, Ji, Ji, Ji, Kageyama, Kaiser, Kenjereš, Kenjereš, Kenjereš, Khalzov, Khalzov, Kirillov, Kirko, Kitchatinov, Kivelson, Knobloch, Kono, Kouveliotou, Krasnov, Krechetnikov, Kronberg, Kuang, Kulsrud, Laguerre, Laguerre, Lakhin, Larmor, Lathrop, Laval, Lehnert, Liu, Liu, Liu, Liu, Lord Rayleigh, Lowes, Lowes, Léora, Léorat, Marié, Marié, Marié, Monchaux, Moresco, Morris, Müller, Müller, Müller, Müller, Nakajima, Nataf, Ness, Nornberg, Nornberg, Ogilvie, Ossendrijver, Parker, Peffley, Peffley, Pekeris, Pessah, Pierson, Plunian, Ponomarenko, Priede, Pétrélis, Pétrélis, Pétrélis, Ravelet, Reighard, Rincon, Roach, Roberts, Roberts, Roberts, Roberts, Rädler, Rädler, Rädler, Rädler, Rädler, Rädler, Rüdiger, Rüdiger, Rüdiger, Rüdiger, Schekochihin, Schekochihin, Schmitt, Schrinner, Schrinner, Schultz-Grunow, Shakura, Shew, Siemens, Sisan, Sisan, Southwood, Spence, Spence, Spruit, Steenbeck, Steenbeck, Stefani, Stefani, Stefani, Stefani, Stefani, Stefani, Stefani, Stefani, Stellmach, Stellmach, Stepanov, Stevenson, Stevenson, Stieglitz, Szklarski, Szklarski, Tayler, Tilgner, Tilgner, Tilgner, Tilgner, Tilgner, Tilgner, Turner, Vandakurov, Velikhov, Velikhov, Verma, Volk, Wang, Wendt, Wheatstone, Wicht, Wilkinson, Winterberg, Wosnitza, Xu, Xu, Xu, Zandbergen +232 morecore +2 more sourcesFormation of the Bubble‐Like Ionospheric Super‐Depletion Structure (BLISS): MAGE Simulation of the September, 2017 Storm
Geophysical Research Letters, Volume 52, Issue 12, 28 June 2025.Abstract
This study investigates the formation of a newly identified storm‐time ionospheric phenomenon, the bubble‐like ionospheric super‐depletion structure (BLISS) in F‐region plasma densities. The observed BLISS initiates from the magnetic dip equator in the post‐sunset region and expands westward and poleward, reaching midlatitudes of ∼40°, which ...Shanshan Bao, Wenbin Wang, Viacheslav Merkin, Frank Toffoletto, Dong Lin, Kareem Sorathia, Kevin Pham, Michael Wiltberger, Haonan Wu +8 morewiley +1 more sourceInterplay Between a Foreshock Bubble and a Hot Flow Anomaly Forming Along the Same Rotational Discontinuity
Geophysical Research Letters, Volume 52, Issue 12, 28 June 2025.Abstract
Solar wind directional discontinuities can generate transient mesoscale structures such as foreshock bubbles and hot flow anomalies (HFAs) upstream of Earth's bow shock. These structures can have a global impact on near‐Earth space, so understanding their formation conditions is essential.Lucile Turc, Martin O. Archer, Hongyang Zhou, Yann Pfau‐Kempf, Jonas Suni, Primož Kajdič, Xóchitl Blanco‐Cano, Souhail Dahani, Markus Battarbee, Savvas Raptis, Terry Z. Liu, Hui Zhang, C. Philippe Escoubet, Adrian T. LaMoury, Shi Tao, Veera Lipsanen, Yufei Hao, Minna Palmroth +17 morewiley +1 more sourceMagnetohydrodynamics and Plasma Cosmology
, 2005 We study the linear magnetohydrodynamic (MHD) equations, both in the
Newtonian and the general-relativistic limit, as regards a viscous magnetized
fluid of finite conductivity and discuss instability criteria.A. Brandenburg, A.A. Galeev, A.M. Wolfe, Apostolos Kuiroukidis, B. Punsly, C. Hunter, C.G. Tsagas, C.L. Fryer, D.B. Papadopoulos, D.B. Papadopoulos, Demetrios Papadopoulos, E.N. Parker, E.N. Parker, H. Dimmelmeier, J. Adams, J. Carot, J. Jackson, J.D. Barrow, J.D. Jackson, J.V. Narlikar, K. Jedamzik, K.C. Jacobs, K.S. Thorne, Kostas Kleidis, L. Vlahos, Loukas Vlahos, N.A. Krall, P.P. Kronberg, P.P. Kronberg, P.P. Kronberg, R. Durrer, R. Durrer, S. Chandrasekhar, S. Hacyan, S. Weinberg, S.M. Hamberger, S.W. Hawking, T.G. Cowling, T.W. Baumgarte, Ya.B. Zel’dovich +39 morecore +1 more sourceStencil Computations on AMD and Nvidia Graphics Processors: Performance and Tuning Strategies
Concurrency and Computation: Practice and Experience, Volume 37, Issue 12-14, 25 June 2025.ABSTRACT
Over the last ten years, graphics processors have become the de facto accelerator for data‐parallel tasks in various branches of high‐performance computing, including machine learning and computational sciences. However, with the recent introduction of AMD‐manufactured graphics processors to the world's fastest supercomputers, tuning ...Johannes Pekkilä, Oskar Lappi, Fredrik Robertsén, Maarit J. Korpi‐Lagg +3 morewiley +1 more source