Results 231 to 240 of about 166,212 (332)

Cybersecuity Analysis of a Telemedicine Platform. [PDF]

open access: yesHealthcare (Basel)
Nobili M, Raguseo D, Setola R.
europepmc   +1 more source

A bioinformatics screen identifies TCF19 as an aggressiveness‐sustaining gene in prostate cancer

open access: yesMolecular Oncology, EarlyView.
Gene expression meta‐analysis in multiple prostate cancer patient cohorts identifies Transcription factor 19 (TCF19) as an aggressiveness‐sustaining gene with prognostic potential. TCF19 is a gene repressed by androgen signaling that sustains core cancer‐related processes such as vascular permeability or tumor growth and metastasis.
Amaia Ercilla   +15 more
wiley   +1 more source

In vitro properties of patient serum predict clinical outcome after high dose rate brachytherapy of hepatocellular carcinoma

open access: yesMolecular Oncology, EarlyView.
Following high dose rate brachytherapy (HDR‐BT) for hepatocellular carcinoma (HCC), patients were classified as responders and nonresponders. Post‐therapy serum induced increased BrdU incorporation and Cyclin E expression of Huh7 and HepG2 cells in nonresponders, but decreased levels in responders.
Lukas Salvermoser   +14 more
wiley   +1 more source

Inhibition of CDK9 enhances AML cell death induced by combined venetoclax and azacitidine

open access: yesMolecular Oncology, EarlyView.
The CDK9 inhibitor AZD4573 downregulates c‐MYC and MCL‐1 to induce death of cytarabine (AraC)‐resistant AML cells. This enhances VEN + AZA‐induced cell death significantly more than any combination of two of the three drugs in AraC‐resistant AML cells.
Shuangshuang Wu   +18 more
wiley   +1 more source

Adaptaquin is selectively toxic to glioma stem cells through disruption of iron and cholesterol metabolism

open access: yesMolecular Oncology, EarlyView.
Adaptaquin selectively kills glioma stem cells while sparing differentiated brain cells. Transcriptomic and proteomic analyses show Adaptaquin disrupts iron and cholesterol homeostasis, with iron chelation amplifying cytotoxicity via cholesterol depletion, mitochondrial dysfunction, and elevated reactive oxygen species.
Adrien M. Vaquié   +16 more
wiley   +1 more source

Home - About - Disclaimer - Privacy