Results 241 to 250 of about 815,602 (356)

Decoding nitrogen uptake efficiency in maize and sorghum: insights from comparative gene regulatory networks. [PDF]

open access: yesPlant J
Braynen J   +14 more
europepmc   +1 more source

Adaptability and Stability in Maize Populations

open access: diamond, 2019
Jeeder Fernando Naves Pinto   +3 more
openalex   +2 more sources

Few‐Layered Conductive Graphene Foams for Electrical Transdifferentiation of Mesenchymal Stem Cells Into Schwann Cell‐Like Phenotypes

open access: yesAdvanced Healthcare Materials, EarlyView.
Few‐layered three dimansional conductive graphene foams are promising cytocompatible platforms to transdifferentiate mesenchymal stem cells into Schwann cell‐like phenotypes using electrical and microstructural cues. Applied electrical stimulation conditions resulted in activation of MAPK, neurotrphin and RAS signaling pathways that led to upregulation
Ekin G. Simsar   +9 more
wiley   +1 more source

Multiscale Hybrid Surface Topographies Orchestrate Immune Regulation, Antibacterial Defense, and Tissue Regeneration

open access: yesAdvanced Healthcare Materials, EarlyView.
Hybrid wrinkled topographies coordinate immune, tissue, and bacterial interactions. The surfaces promote osteointegration, tune macrophage polarization, and inhibit biofilm formation, highlighting a multifunctional strategy for next‐generation implant design.
Mohammad Asadi Tokmedash   +4 more
wiley   +1 more source

Gene Mapping and Genetic Analysis of Maize Resistance to Stalk Rot. [PDF]

open access: yesInt J Mol Sci
Wang B   +8 more
europepmc   +1 more source

Synthetic Hydrogels Incorporating Hydrolytic/Nonhydrolytic Macromer Ratios Exhibit Improved Tunability of In Vivo Degradation and Immune Responses

open access: yesAdvanced Healthcare Materials, EarlyView.
A synthetic 4‐arm maleimide‐terminated poly(ethylene glycol) (PEG‐4MAL) hydrogel system that combines hydrolytic ester‐linked macromer (PEG‐4eMAL) with nondegradable amide‐linked macromer (PEG‐4aMAL) in various stoichiometric ratios to tune the degradability rate. The macromers are crosslinked with dithiothreitol via thiol‐maleimide click reaction. The
Michael D. Hunckler   +7 more
wiley   +1 more source

Ascorbic Acid Modulates Collagen Properties in Glucocorticoid‐Induced Osteoporotic Bone: Insights into Chemical, Mechanical, and Biological Regulation

open access: yesAdvanced Healthcare Materials, EarlyView.
Osteoporosis from long‐term glucocorticoid (GIOP) use elevates susceptibility to fracture. This study shows GCs impair ascorbic acid (AA) metabolism in osteoblasts, collagen synthesis and extracellular matrix integrity. AA enhanced collagen biochemical and mechanical properties and restored osteoblast and endothelial function. These findings underscore
Micaila DE Curtis   +19 more
wiley   +1 more source

Home - About - Disclaimer - Privacy