Results 161 to 170 of about 1,173,149 (341)
Multimodal Layer‐Crossing Interrogation of Brain Circuits Enabled by Microfluidic Axialtrodes
The study introduces a flexible microfluidic axialtrode that integrates optical, electrical, and chemical modalities within a single polymer fiber. By redistributing electrodes and fluidic channels along the fiber axis via angled cleaving, it enables simultaneous optogenetic stimulation, electrophysiological recording, and drug delivery across brain ...
Kunyang Sui +8 more
wiley +1 more source
Inspired by nature's competitive maneuvers, this study introduces a combustion‐driven soft actuator that powers a multi‐modal “Jump‐and‐Fly Catbot” (JFC). With millisecond response, high‐force output (over 70 times its weight) and precise control (error within 5%), the robot can jump, fly, hover, and escape from challenging environments, achieving ...
Hongkuan Ma +4 more
wiley +1 more source
ABSTRACT Immune homeostasis is indispensable for preserving organismal integrity, orchestrated through complex molecular networks encompassing immune cell dynamics, microbial cues, and epigenetic regulation. Among these, the gut microbiota‐non‐coding RNA (ncRNA) axis has recently garnered substantial attention as a multifaceted modulator of host ...
Bonan Chen +12 more
wiley +1 more source
Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 217, March 1981 [PDF]
Approximately 130 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981 are included in this bibliography.
core +1 more source
In hypoxic microenvironment, WNT5A is predominantly secreted by tumor‐associated macrophages. Hypoxia‐induced WTAP mediates ROR1 stability by m6A modifications in a HuR‐dependent manner in Glioma stem cells (GSCs). WNT5A activates the WNT pathway via ROR1 binding on GSCs, driving glioma‐derived endothelial cells (GDECs) differentiation.
Xiaoyong Chen +15 more
wiley +1 more source
Neuromorphic Motor Control with Electrolyte‐Gated Organic Synaptic Transistors
Electrolyte‐gated organic synaptic transistor (EGOST)‐based neuromorphic motor control systems integrate sensing, processing, and actuation by mimicking biological synapses. With advantages such as low power consumption, tunable synaptic plasticity, and mechanical flexibility, they are emerging as next‐generation core technologies for real‐time ...
Sung‐Hwan Kim +3 more
wiley +1 more source
Invertebrates are the classic neuroscience models and should make a comeback. Invertebrate organisms can be a more ethical and cost‐effective way to move bioelectronics research forward more rapidly. ABSTRACT The accelerating development of bioelectronic neural interfaces has brought increased attention to ethical considerations surrounding in vivo ...
Eric Daniel Głowacki
wiley +1 more source
This Perspective examines practical power solutions for wearable healthcare systems, highlighting the limits of standard batteries. It categorizes wearables into four domains—point‐of‐care diagnostics, episodic monitoring, continuous long‐term monitoring, and therapeutic platforms—and analyzes their power needs.
Seokheun Choi
wiley +1 more source
Complications of Chiropractic Manipulation in a Patient With Von Willebrand Disease: A Clinical Case Report and Literature Review. [PDF]
Rodriguez-Rodriguez OF +4 more
europepmc +1 more source

