Results 191 to 200 of about 743,710 (334)

High‐Concentration Mesogen‐Assisted Exfoliation of Low‐Dimensional Nanomaterials for Achieving Ultralow‐Temperature Actuations of Liquid Crystal Elastomers

open access: yesAdvanced Functional Materials, EarlyView.
Most matter is nominally frozen in the polar regions or space, and liquid crystal materials are no exception. Consequently, soft actuators, including liquid crystal elastomers (LCEs), are inoperative under such extreme cold in response to stimuli, as their motion relies on mechanical deformation.
Hyeonseong Kim   +5 more
wiley   +1 more source

Removal of Steroid Hormone Micropollutants by an Electrochemical Carbon Nanotube Membrane Flow‐Through Reactor: Role of Concentration and Degradation Mechanisms

open access: yesAdvanced Functional Materials, EarlyView.
A flow‐through electrochemical membrane reactor equipped with a carbon nanotube membrane eliminates the mass transfer limitation, achieving removals >97.5% for steroid hormone (SH) micropollutants through electrochemical adsorption and degradation, over a broad initial concentration varying from 50 to 106 ng L−1.
Siqi Liu   +2 more
wiley   +1 more source

Marginal Fit of Porcelain Laminate Veneer Materials under Thermocycling Condition: An In-Vitro Study. [PDF]

open access: yesDent J (Basel), 2023
Hanoon ZA   +5 more
europepmc   +1 more source

Continuous‐Flow Photocatalytic Degradation of Glyphosate and Aminomethylphosphonic Acid Under Simulated Sunlight with TiO2‐Coated Poly(vinylidene fluoride) Membrane

open access: yesAdvanced Functional Materials, EarlyView.
Glyphosate (GLY) and its primary metabolite, aminomethylphosphonic acid (AMPA), are photodegraded using a poly(vinylidene fluoride) membrane with immobilized titanium dioxide (PVDF‐TiO2) in a continuous flow‐through operation under solar light. At optimized conditions, the PVDF‐TiO2 membrane achieved 95% GLY and 80% AMPA removal with •O2− as the ...
Phuong B. Trinh   +4 more
wiley   +1 more source

Impact of Ceramic Material and Preparation Design on Marginal Fit of Endocrown Restorations. [PDF]

open access: yesMaterials (Basel), 2022
Soliman M   +6 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy