Results 181 to 190 of about 6,724,050 (344)

Circular Potential of Lithium‐Ion Battery Recycling Slags: Quantifying Microstructure and Elemental Distribution for a Holistic Valorization

open access: yesAdvanced Science, EarlyView.
A lithium‐bearing slag is investigated with the goal of holistic valorization. The present β‐eucryptite (LiAlSiO4) exhibits a high lithium content and low levels of impurities. The spinel contains most of the chromium and vanadium, representing additional valorization opportunities.
Peter Cornelius Gantz   +9 more
wiley   +1 more source

Scalable Upcycling of Spent Lithium‐Ion Battery Anodic Graphite to Electronic‐Grade Graphene

open access: yesAdvanced Science, EarlyView.
Graphite anodes from spent lithium‐ion batteries are upcycled into electronic‐grade graphene nanoplatelets for highly conductive screen printing inks (> 104 S m−1). Screen‐printed micro‐supercapacitors confirm the utility of the upcycled graphene (1.78 mF/cm2 capacitance for > 10 000 cycles). Life cycle assessment and techno‐economic analysis highlight
Janan Hui   +8 more
wiley   +1 more source

Aqueous Zinc‐Based Batteries: Active Materials, Device Design, and Future Perspectives

open access: yesAdvanced Energy Materials, EarlyView.
This review conducts a comprehensive analysis of aqueous zinc‐based batteries (AZBs) based on their intrinsic mechanisms, including redox reactions, ion intercalation reactions, alloying reactions, electrochemical double‐layer reactions, and mixed mechanisms, systematically discussing recent advancements in each type of AZBs.
Yan Ran, Fang Dong, Shuhui Sun, Yong Lei
wiley   +1 more source

Home - About - Disclaimer - Privacy