Results 261 to 270 of about 5,677,139 (349)
Precision Editing of NLRS Improves Effector Recognition for Enhanced Disease Resistance
Precision engineering of plant NLR immune receptors enables rational design of enhanced pathogen resistance through mismatched pairing, domain swapping, and targeted mutagenesis. These approaches achieve multi‐fold expansion in recognition breadth while minimizing autoimmunity risks and fitness penalties.
Vinit Kumar +7 more
wiley +1 more source
Navigating the Ethereal Tightrope: The Nanogenerator Manipulates Neurons for Immune Equilibrium
This review explores how nanogenerators modulate neuroimmune responses, offering innovative strategies for treating neurological disorders. By interfacing with neural pathways, they enable precise control of immune activity, especially via vagus nerve stimulation.
Jia Du +5 more
wiley +1 more source
Structure‐Based Development of Ultra‐Broad‐Spectrum 3C‐Like Protease Inhibitors
This study provides an in‐depth analysis of the substrate binding pocket of 3CLpros across all coronavirus species using bioinformatics and structural insights, revealing the critical impact of S2/S4 subsite diversity on the broad‐spectrum activity of approved therapeutics.
Haixia Su +15 more
wiley +1 more source
METTL5 Enables Immune Evasion of Liver Cancer via Chemokine mRNA Translation Regulation
METTL5 reshapes the tumor immune microenvironment through ribosome 18S rRNA m6A modification to regulate the translation of chemokine mRNA. Targeting METTL5‐mediated immunosuppression unleashes anti‐tumor immunity and improves the efficacy of anti‐PD‐1 therapy.
Shuang Li +19 more
wiley +1 more source
Dual genetic strategies for improving wheat processing quality by regulating purothionin accumulation to modulate gluten quantity and quality. The first strategy involves targeting signal peptide (SP) cleavage sites (e.g., through mutation) to indirectly reduce gluten content, thereby disrupting gluten network formation.
Yijie Liu +16 more
wiley +1 more source
Biodegradable Adhesive Systems for Bio‐Integrated Applications
Biodegradable adhesives provide temporary yet reliable adhesion while degrading into safe, non‐toxic by‐products under physiological or environmental conditions. This review summarizes recent developments in physical and chemical adhesion mechanisms—including hydrogen bonding, catechol chemistry, amine‐carboxyl coupling, and emerging diazirine and urea
Won Bae Han +6 more
wiley +1 more source
This study reveals that XBP1s drives production of circTspan3, a circular RNA that strengthens cartilage by boosting anabolic activity and limiting cell death. Phosphorylated ANXA2 directs circTspan3 into exosomes, enabling paracrine repair. Exosomal circTspan3 expands growth‐plate cartilage and promotes in vivo regeneration, highlighting its promise ...
Yiming Pan +16 more
wiley +1 more source
PEDOT:PSS—A Key Material for Bioelectronics
PEDOT:PSS ‐ Poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate ‐ is typically processed from water dispersions to form multifunctional and multidimensional constructs with tunable electronic and ionic conductivity. Throught processing engineering, PEDOT:PSS is intergrated in bioelectronic devices that operate efficiently in physiological conditions
Alan Eduardo Ávila Ramírez +5 more
wiley +1 more source

