Results 71 to 80 of about 86,980 (313)
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley +1 more source
This work presents a novel generative artificial intelligence (AI) framework for inverse alloy design through operations (optimization and diffusion) within learned compact latent space from variational autoencoder (VAE). The proposed work addresses challenges of limited data, nonuniqueness solutions, and high‐dimensional spaces.
Mohammad Abu‐Mualla +4 more
wiley +1 more source
ON THE INFINITE ORDER MARKOV PROCESSES [PDF]
The notion of infinite order Markov process is introduced and the Markov property of the flow of information is established.
doaj
Disentangled Sticky Hierarchical Dirichlet Process Hidden Markov Model [PDF]
Ding Zhou, Yuanjun Gao, Liam Paninski
openalex +1 more source
Limit theorems for prices of options written on semi-Markov processes [PDF]
Enrico Scalas, Bruno Toaldo
openalex +1 more source
Deep Learning‐Assisted Coherent Raman Scattering Microscopy
The analytical capabilities of coherent Raman scattering microscopy are augmented through deep learning integration. This synergistic paradigm improves fundamental performance via denoising, deconvolution, and hyperspectral unmixing. Concurrently, it enhances downstream image analysis including subcellular localization, virtual staining, and clinical ...
Jianlin Liu +4 more
wiley +1 more source
Advanced Experiment Design Strategies for Drug Development
Wang et al. analyze 592 drug development studies published between 2020 and 2024 that applied design of experiments methodologies. The review surveys both classical and emerging approaches—including Bayesian optimization and active learning—and identifies a critical gap between advanced experimental strategies and their practical adoption in ...
Fanjin Wang +3 more
wiley +1 more source
Heat generation in lithium‐ion batteries affects performance, aging, and safety, requiring accurate thermal modeling. Traditional methods face efficiency and adaptability challenges. This article reviews machine learning‐based and hybrid modeling approaches, integrating data and physics to improve parameter estimation and temperature prediction ...
Qi Lin +4 more
wiley +1 more source
The linear framework II: using graph theory to analyse the transient regime of Markov processes. [PDF]
Nam KM, Gunawardena J.
europepmc +1 more source
Quadrotor unmanned aerial vehicle control is critical to maintain flight safety and efficiency, especially when facing external disturbances and model uncertainties. This article presents a robust reinforcement learning control scheme to deal with these challenges.
Yu Cai +3 more
wiley +1 more source

