Results 11 to 20 of about 2,586,412 (68)

Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes [PDF]

open access: yesJ.Korean Phys.Soc.45:S1808-S1812,2004; Astrophys.J.611:996-1004,2004, 2004
Can we determine a spin parameter of a black hole by observation of a black hole shadow in an accretion disk? In order to answer this question, we make a qualitative analysis and a quantitative analysis of a shape and a position of a black hole shadow casted by a rotating black hole on an optically thick accretion disk and its dependence on an angular ...
arxiv   +1 more source

The BM@N spectrometer at the NICA accelerator complex [PDF]

open access: yesarXiv, 2023
BM@N (Baryonic Matter at Nuclotron) is the first experiment operating and taking data at the Nuclotron/NICA ion-accelerating complex.The aim of the BM@N experiment is to study interactions of relativistic heavy-ion beams with fixed targets. We present a technical description of the BM@N spectrometer including all its subsystems.
arxiv  

Faithful flatness of Hopf algebras over coideal subalgebras with a conditional expectation [PDF]

open access: yesarXiv, 2023
Let $H$ be a Hopf algebra and let $A\subset H$ be a right coideal subalgebra. We show that if $A$ is a direct summand in $H$ as a right $A$-module, then $H$ is faithfully flat as a right $A$-module.
arxiv  

Conditions for the difference set of a central Cantor set to be a Cantorval. Part II [PDF]

open access: yesarXiv, 2023
Let C(a) be the central Cantor set generated by a sequence a with terms in (0,1). It is known that the difference set C(a)-C(a) of C(a) can has one of three possible forms: a finite union of closed intervals, a Cantor set, or a Cantorval. In the previous paper there was proved a sufficient condition for the sequence a which implies that C(a) - C(a) is ...
arxiv  

A Piece of the Lepton Theory from a Probability [PDF]

open access: yesarXiv, 2001
A masses of a leptons deduced from a representation of a probability density vector by a spinors. A massive W and Z bosons and a massless A boson are obtained from a transformations for which a density vector is invariant.
arxiv  

On a question of A. Balog [PDF]

open access: yesarXiv, 2015
We give a partial answer to a conjecture of A. Balog, concerning the size of AA+A, where A is a finite subset of real numbers. Also, we prove several new results on the cardinality of A:A+A, AA+AA and A:A + A:A.
arxiv  

Enumeration of symmetric centered rhombus tilings of a hexagon [PDF]

open access: yesarXiv, 2013
A rhombus tiling of a hexagon is said to be centered if it contains the central lozenge. We compute the number of vertically symmetric rhombus tilings of a hexagon with side lengths $a, b, a, a, b, a$ which are centered. When $a$ is odd and $b$ is even, this shows that the probability that a random vertically symmetric rhombus tiling of a $a, b, a, a ...
arxiv  

La comunicació audiovisual: competència transversal o assignatura pendent? [PDF]

open access: yes, 2021
[spa] La comunicació audiovisual com a forma de comunicació social està cada vegada més present a la nostra societat. Per aquesta raó es preveu necessària una educació a les aules que apropi aquesta realitat social als centres.
Fullana Arias, Andreu
core  

Restricted-sum-dominant sets [PDF]

open access: yesarXiv, 2017
Let $A$ be a nonempty finite subset of an additive abelian group $G$. Define $A + A := \{a + b : a, b \in A\}$ and $A \dotplus A := \{a + b : a, b \in A~\text{and}~ a \neq b\}$. The set $A$ is called a {\em sum-dominant (SD) set} if $|A + A| > |A - A|$, and it is called a {\em restricted sum-domonant (RSD) set} if $|A \dotplus A| > |A - A|$.
arxiv  

La dificultat del Tribunal Constitucional com a garant de l'autonomia territorial [PDF]

open access: yes, 2009
El procés de descentralització política d'Espanya, iniciat a partir de la Constitució de 1978, ha exigit una notable activitat jurisdiccional per part del Tribunal Constitucional des que va entrar en funcionament el 1980.
Pedro Cruz Villalón
core  

Home - About - Disclaimer - Privacy