Results 261 to 270 of about 3,808,576 (314)
Bridging Nature and Technology: A Perspective on Role of Machine Learning in Bioinspired Ceramics
Machine learning (ML) is revolutionizing the development of bioinspired ceramics. This article investigates how ML can be used to design new ceramic materials with exceptional performance, inspired by the structures found in nature. The research highlights how ML can predict material properties, optimize designs, and create advanced models to unlock a ...
Hamidreza Yazdani Sarvestani+2 more
wiley +1 more source
ErB4 and NdB4 nanostructured powders are produced by mechanochemical synthesis. 5 h mechanical alloying and 4 M HCl acid leaching are used in the production. ErB4 and NdB4 powders exhibit maximum magnetization of 0.4726 emu g−1 accompanied with an antiferromagnetic‐to‐paramagnetic phase transition at about TN = 18 K and 0.132 emu g−1 with a maximum at ...
Burçak Boztemur+5 more
wiley +1 more source
The stability criteria affecting the formation of high‐entropy alloys, particularly focusing in supersaturated solid solutions produced by mechanical alloying, are analyzed. Criteria based on Hume–Rothery rules are distinguished from those derived from thermodynamic relations. The formers are generally applicable to mechanically alloyed samples.
Javier S. Blázquez+5 more
wiley +1 more source
The study presents an efficient simulation approach for the polymer laser powder bed fusion process polymers process, validated with polyamide 12, polyamide 6, and polyetherketoneketone. It shows that inter layer time affects part density, with 90s yielding dense parts.
Claas Bierwisch+4 more
wiley +1 more source
Additive manufacturing of magnesium alloys by laser is difficult because the melting point of the oxide layer is much higher than the evaporation temperature of the metal underneath. Making the oxide layer thinner can solve this problem. Alloying magnesium with strontium makes the oxide layer thinner, especially at 0.5 wt%.
Elmar Jonas Breitbach+8 more
wiley +1 more source
A Case‐Based Reasoning Approach to Model Manufacturing Constraints for Impact Extrusion
A hybrid modeling approach is presented that combines constraint‐based process modeling and case‐based reasoning. The model formalizes manufacturing constraints and integrates simulation data to model complex manufacturing processes. The approach supports manufacturability analysis during product design through an adaptive modeling environment.
Kevin Herrmann+5 more
wiley +1 more source