Results 251 to 260 of about 26,836,972 (345)

Geometry‐Guided Osteogenesis in Bone‐on‐a‐Chip Systems Using Triply Periodic Minimal Surface Scaffolds

open access: yesAdvanced Healthcare Materials, EarlyView.
This study presents a bone‐on‐a‐chip platform incorporating TPMS scaffolds to study geometry‐dependent osteogenesis under dynamic flow. By tuning pore shape and solidity, it precisely controls mechanical cues, revealing how topological features and shear stress affect osteogenic differentiation and matrix formation.
Donggyu Kim   +5 more
wiley   +1 more source

AI‐Assisted Design and Evaluation of SLM‐Ti64 Implants for Enhanced Bone Regeneration

open access: yesAdvanced Healthcare Materials, EarlyView.
AI‐driven simulations of biological healing, combining biomechanical modeling and machine learning, enable personalized orthopedic treatments. By decoding healing patterns influenced by implants and patient‐specific factors, this approach advances fracture repair understanding, optimizes implant design, and supports precision medicine and sustainable ...
Muhammad Usama Zaheer   +3 more
wiley   +1 more source

Hybrid Scaffolds Decouple Biochemical & Biophysical Regulation of Cell Phenotype

open access: yesAdvanced Healthcare Materials, EarlyView.
Replicating tissue‐specific extracellular matrix is crucial for understanding its role in disease. This work demonstrates independent control over stiffness, composition and 3D collagen architecture using hybrid scaffolds: patterned collagen perfused with defined hydrogels.
Xinyuan Song   +17 more
wiley   +1 more source

Computational Modeling of Reticular Materials: The Past, the Present, and the Future

open access: yesAdvanced Materials, EarlyView.
Reticular materials are advanced materials with applications in emerging technologies. A thorough understanding of material properties at operating conditions is critical to accelerate the deployment at an industrial scale. Herein, the status of computational modeling of reticular materials is reviewed, supplemented with topical examples highlighting ...
Wim Temmerman   +3 more
wiley   +1 more source

Hierarchically MOF‐Based Porous Monolith Composites for Atmospheric Water Harvesting

open access: yesAdvanced Materials, EarlyView.
This review explores the design of hierarchical porous materials for atmospheric water harvesting, focusing on metal‐organic frameworks (MOFs) and porous monoliths. Emphasis is placed on integrating MOF nanoscale porosity with the microscale channels of monolithic scaffolds to enhance sorption‐desorption performance.
Mahyar Panahi‐Sarmad   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy