Results 191 to 200 of about 5,958,127 (312)

Inorganic Dielectric Materials Coupling Micro‐/Nanoarchitectures for State‐of‐the‐Art Biomechanical‐to‐Electrical Energy Conversion Devices

open access: yesAdvanced Materials, EarlyView.
Biomechanical‐to‐electrical energy conversion devices are uniquely suited for self‐driven physiological information monitoring and powering human–computer interaction systems. These devices based on micro‐/nanoarchitectured inorganic dielectric materials (MNIDMs) have shown ultrahigh electromechanical performance and thus great potential for practical ...
Jia‐Han Zhang   +12 more
wiley   +1 more source

Superior Adhesion of Monolayer Amorphous Carbon to Copper

open access: yesAdvanced Materials, EarlyView.
The adhesion energy of monolayer amorphous carbon on copper substrate is 85 J m−2, 13 times higher than that of graphene due to covalent‐like bonding between the sp2 carbon structure to copper. X‐ray photoelectron spectroscopy (XPS), near‐edge X‐ray absorption (NEXAFS), and (density functional theory) DFT calculations are used to elucidate the ...
Hongji Zhang   +27 more
wiley   +1 more source

A mathematical model platform for optimizing a multiprojection breast imaging system [PDF]

open access: green, 2008
Amarpreet S. Chawla   +4 more
openalex   +1 more source

Glaphene: A Hybridization of 2D Silica Glass and Graphene

open access: yesAdvanced Materials, EarlyView.
‘Glaphene’, a novel hybrid material combining 2D silica glass and graphene, is synthesized via a scalable liquid precursor‐based vapor‐phase growth. This study reveals interlayer hybridization beyond van der Waals interactions, leading to emergent semiconducting behavior.
Sathvik Ajay Iyengar   +10 more
wiley   +1 more source

On‐Chip Active Supercoupled Topological Cavity

open access: yesAdvanced Materials, EarlyView.
The on‐chip supercoupled cavity device is demonstrated realizing a record cavity excitation distance exceeding three wavelengths, leveraging the valley‐conserved supercoupling mechanism in the valley Hall topological system. This optothermal tunable design enables new degrees of freedom for supercoupled photonic cavities in mux‐demux, lasers, sensors ...
Ridong Jia   +7 more
wiley   +1 more source

Characterization and Inverse Design of Stochastic Mechanical Metamaterials Using Neural Operators

open access: yesAdvanced Materials, EarlyView.
This study presents a DeepONet‐based machine learning framework for designing stochastic mechanical metamaterials with tailored nonlinear mechanical properties. By leveraging sparse but high‐quality experimental data from in situ micro‐mechanical tests, high predictive accuracy and enable efficient inverse design are achieved.
Hanxun Jin   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy