Results 11 to 20 of about 104,594 (185)
Abstract Purpose This study evaluates the dosimetric and geometric precision of a virtual cone technique using CBCT‐based polymer gel dosimetry, enabling radiation delivery, and imaging readout within an identical spatial coordinate system. Methods We created a C# script for a virtual cone technique that generates a treatment plan with 10 gantry arcs ...
Tenzin Kunkyab+6 more
wiley +1 more source
Summary Data‐driven forecasting of ship motions in waves is investigated through feedforward and recurrent neural networks as well as dynamic mode decomposition. The goal is to predict future ship motion variables based on past data collected on the field, using equation‐free approaches.
Matteo Diez+2 more
wiley +1 more source
Elasticity of Diametrically Compressed Microfabricated Woodpile Lattices
Modulus–porosity relationship is derived for woodpile lattices with struts under diametrical compression. The formula presented here that Young's modulus is proportional to the square of the volume fraction E˜ρ2$E \sim \left(\rho\right)^{2}$ is shown to be consistent with computations and laboratory experiments on 3D‐printed samples.
Faezeh Shalchy, Atul Bhaskar
wiley +1 more source
A Novel Simulation Approach for Damage Evolution during Tailored Forming
Traditional damage models are struggling to accurately and efficiently simulate large‐scale three‐dimensional models with a great number of degrees of freedoms. A new gradient‐enhanced damage model based on the extended Hamilton principle can significantly reduce the computation time while ensuring mesh‐independence which is suitable to use in tailored
Fangrui Liu+2 more
wiley +1 more source
This study examines the mechanical properties of triply periodic minimal surfaces (TPMS)‐based lattices, analyzing 36 architectures in elastic and plastic regimes. It evaluates the applicability of beam‐based scaling laws to TPMS lattices. Rigidity arises from the alignment of members with the load direction and solid regions preventing rotation.
Lucía Doyle+2 more
wiley +1 more source
Controlling the size and distribution of dispersoids is essential for optimizing the performance of oxide‐dispersion‐strengthened steels. This study focuses on nanoparticle dispersion and agglomeration during laser additive manufacturing of Fe20Cr alloy reinforced with ZrO 2 nanoparticles. Utilizing multiphysics phase‐field simulations and nanoparticle
Somnath Bharech+6 more
wiley +1 more source
Large scale analytic calculations in quantum field theories
We present a survey on the mathematical structure of zero- and single scale quantities and the associated calculation methods and function spaces in higher order perturbative calculations in relativistic renormalizable quantum field theories.Comment: 25 ...
A Kratzer+98 more
core +2 more sources
Toughness of Confined Auxetic Foams
Auxetic (negative Poisson's ratio) materials offer benefits such as impact mitigation, thermal insulation, vibration damping, and reduced shear strain, although their fracture mechanics are largely unexplored. This study investigates damage initiation and propagation in confined re‐entrant auxetic foams from polyurethane via experimental ...
Adrianos E. F. Athanasiadis+3 more
wiley +1 more source
Copper sulfide based electrocatalysts for CO2 conversion are selective for production of formate as major product. Transformations under electrochemical conditions result in significant sulfur loss, and this study examines the nature of how persistent, residual sulfur (observed as surface SO42– species and S dissolved in the electrolyte) can sustain ...
Sasho Stojkovikj+8 more
wiley +1 more source
Quantum Integrals of Motion for Variable Quadratic Hamiltonians
We construct the integrals of motion for several models of the quantum damped oscillators in nonrelativistic quantum mechanics in a framework of a general approach to the time-dependent Schroedinger equation with variable quadratic Hamiltonians.
Andriopoulos+147 more
core +1 more source