Results 31 to 40 of about 101,170 (187)
Dimer models and conformal structures
Abstract Dimer models have been the focus of intense research efforts over the last years. Our paper grew out of an effort to develop new methods to study minimizers or the asymptotic height functions of general dimer models and the geometry of their frozen boundaries.
Kari Astala +3 more
wiley +1 more source
On the Q‐Polynomial Property of Bipartite Graphs Admitting a Uniform Structure
ABSTRACT Let Γ denote a finite, connected graph with vertex set X. Fix x ∈ X and let ε ≥ 3 denote the eccentricity of x. For mutually distinct scalars { θ i * } i = 0 ε define a diagonal matrix A * = A * ( θ 0 * , θ 1 * , … , θ ε * ) ∈ Mat X ( R ) as follows: for y ∈ X we let ( A * ) y y = θ ∂ ( x , y ) *, where ∂ denotes the shortest path length ...
Blas Fernández +3 more
wiley +1 more source
A simple proof for the number of tilings of quartered Aztec diamonds [PDF]
We get four quartered Aztec diamonds by dividing an Aztec diamond region by two zigzag cuts passing its center. W. Jockusch and J. Propp (in an unpublished work) found that the number of tilings of quartered Aztec diamonds is given by simple product ...
Lai, Tri
core +1 more source
New bounds for equiangular lines
A set of lines in $\mathbb{R}^n$ is called equiangular if the angle between each pair of lines is the same. We address the question of determining the maximum size of equiangular line sets in $\mathbb{R}^n$, using semidefinite programming to improve the ...
Barg, Alexander, Yu, Wei-Hsuan
core +1 more source
Bidiagonal Decompositions and Accurate Computations for the Ballot Table and the Fibonacci Matrix
ABSTRACT Riordan arrays include many important examples of matrices. Here we consider the ballot table and the Fibonacci matrix. For finite truncations of these Riordan arrays, we obtain bidiagonal decompositions. Using them, algorithms to solve key linear algebra problems for ballot tables and Fibonacci matrices with high relative accuracy are derived.
Jorge Ballarín +2 more
wiley +1 more source
A complex network perspective on brain disease
ABSTRACT If brain anatomy and dynamics have a complex network structure as it has become standard to posit, it is reasonable to assume that such a structure should play a key role not only in brain function but also in brain dysfunction. However, exactly how network structure is implicated in brain damage and whether at least some pathologies can be ...
David Papo, Javier M. Buldú
wiley +1 more source
International Journal Of Mathematical Combinatorics
The International J.Mathematical Combinatorics (ISSN 1937-1055) is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly comprising 100-150 pages approx. per volume, which publishes original research papers and survey articles in all aspects of Smarandachemulti-spaces, Smarandache ...
openaire +1 more source
Steiner Triple Systems With High Discrepancy
ABSTRACT In this paper, we initiate the study of discrepancy questions for combinatorial designs. Specifically, we show that, for every fixed r ≥ 3 and n ≡ 1 , 3 ( mod 6 ), any r‐colouring of the triples on [ n ] admits a Steiner triple system of order n with discrepancy Ω ( n 2 ).
Lior Gishboliner +2 more
wiley +1 more source
Ibadan Lectures on Toric Varieties
Toric varieties are perhaps the most accessible class of algebraic varieties. They often arise as varieties parameterized by monomials, and their structure may be completely understood through objects from geometric combinatorics.
Sottile, Frank
core
Advances in Discrete Mathematics: From Combinatorics to Cryptography
Discrete mathematics forms the foundation for various fields, including computer science and cryptography, by providing essential tools for problem-solving in discrete structures. This paper explores the advancements in discrete mathematics, focusing on combinatorics and cryptography.
Romi Bala, Hemant Pandey
openaire +1 more source

