Results 11 to 20 of about 793 (143)
Where Mathematical Symbols Come From. [PDF]
Abstract There is a sense in which the symbols used in mathematical expressions and formulas are arbitrary. After all, arithmetic would be no different if we would replace the symbols ‘+$+$’ or ‘8’ by different symbols. Nevertheless, the shape of many mathematical symbols is in fact well motivated in practice.
Schlimm D.
europepmc +2 more sources
This article investigates how persistent homology, persistent Laplacians, and persistent commutative algebra reveal complementary geometric, topological, and algebraic invariants or signatures of real‐world data. By analyzing shapes, synthetic complexes, fullerenes, and biomolecules, the article shows how these mathematical frameworks enhance ...
Yiming Ren, Guo‐Wei Wei
wiley +1 more source
Efficient Dynamics: Reduced‐Order Modeling of the Time‐Dependent Schrödinger Equation
Reduced‐order modeling (ROM) approaches for the time‐dependent Schrödinger equation are investigated, highlighting their ability to simulate quantum dynamics efficiently. Proper Orthogonal Decomposition, Dynamic Mode Decomposition, and Reduced Basis Methods are compared across canonical systems and extended to higher dimensions.
Kolade M. Owolabi
wiley +1 more source
Vector bundles on bielliptic surfaces: Ulrich bundles and degree of irrationality
Abstract This paper deals with two problems about vector bundles on bielliptic surfaces. The first is to give a classification of Ulrich bundles on such surfaces S$S$, which depends on the topological type of S$S$. In doing so, we study the weak Brill–Noether property for moduli spaces of sheaves with isotropic Mukai vector. Adapting an idea of Moretti
Edoardo Mason
wiley +1 more source
Interaction of Dirac δ$$ \delta $$‐Waves in the Inviscid Levine and Sleeman Chemotaxis Model
ABSTRACT This article investigates interactions of δ$$ \delta $$‐shock waves in the inviscid Levine and Sleeman chemotaxis model ut−λ(uv)x=0$$ {u}_t-\lambda {(uv)}_x=0 $$, vt−ux=0$$ {v}_t-{u}_x=0 $$. The analysis employs a distributional product and a solution concept that extends the classical solution concept.
Adelino Paiva
wiley +1 more source
On Spatial Point Processes With Composition‐Valued Marks
Summary Methods for marked spatial point processes with scalar marks have seen extensive development in recent years. While the impressive progress in data collection and storage capacities has yielded an immense increase in spatial point process data with highly challenging non‐scalar marks, methods for their analysis are not equally well developed ...
Matthias Eckardt +2 more
wiley +1 more source
A Note on Local Polynomial Regression for Time Series in Banach Spaces
ABSTRACT This work extends local polynomial regression to Banach space‐valued time series for estimating smoothly varying means and their derivatives in non‐stationary data. The asymptotic properties of both the standard and bias‐reduced Jackknife estimators are analyzed under mild moment conditions, establishing their convergence rates.
Florian Heinrichs
wiley +1 more source
Aggregation and the Structure of Value
ABSTRACT Roughly, the view I call “Additivism” sums up value across time and people. Given some standard assumptions, I show that Additivism follows from two principles. The first says that how lives align in time cannot, in itself, matter. The second says, roughly, that a world cannot be better unless it is better within some period or another.
Weng Kin San
wiley +1 more source
On computing local monodromy and the numerical local irreducible decomposition
Abstract Similarly to the global case, the local structure of a holomorphic subvariety at a given point is described by its local irreducible decomposition. Geometrically, the key requirement for obtaining a local irreducible decomposition is to compute the local monodromy action of a generic linear projection at the given point, which is always well ...
Parker B. Edwards +1 more
wiley +1 more source
Equivariant toric geometry and Euler–Maclaurin formulae
Abstract We first investigate torus‐equivariant motivic characteristic classes of toric varieties, and then apply them via the equivariant Riemann–Roch formalism to prove very general Euler–Maclaurin‐type formulae for full‐dimensional simple lattice polytopes.
Sylvain E. Cappell +3 more
wiley +1 more source

