Results 21 to 30 of about 793 (143)
Local equivalence and refinements of Rasmussen's s‐invariant
Abstract Inspired by the notions of local equivalence in monopole and Heegaard Floer homology, we introduce a version of local equivalence that combines odd Khovanov homology with equivariant even Khovanov homology into an algebraic package called a local even–odd (LEO) triple.
Nathan M. Dunfield +2 more
wiley +1 more source
The ∞$\infty$‐categorical reflection theorem and applications
Abstract We prove an ∞$\infty$‐categorical version of the reflection theorem of AdÁmek and Rosický [Arch. Math. 25 (1989), no. 1, 89–94]. Namely, that a full subcategory of a presentable ∞$\infty$‐category that is closed under limits and κ$\kappa$‐filtered colimits is a presentable ∞$\infty$‐category.
Shaul Ragimov, Tomer M. Schlank
wiley +1 more source
Sharp commutator estimates of all order for Coulomb and Riesz modulated energies
Abstract We prove functional inequalities in any dimension controlling the iterated derivatives along a transport of the Coulomb or super‐Coulomb Riesz modulated energy in terms of the modulated energy itself. This modulated energy was introduced by the second author and collaborators in the study of mean‐field limits and statistical mechanics of ...
Matthew Rosenzweig, Sylvia Serfaty
wiley +1 more source
On the Q‐Polynomial Property of Bipartite Graphs Admitting a Uniform Structure
ABSTRACT Let Γ denote a finite, connected graph with vertex set X. Fix x ∈ X and let ε ≥ 3 denote the eccentricity of x. For mutually distinct scalars { θ i * } i = 0 ε define a diagonal matrix A * = A * ( θ 0 * , θ 1 * , … , θ ε * ) ∈ Mat X ( R ) as follows: for y ∈ X we let ( A * ) y y = θ ∂ ( x , y ) *, where ∂ denotes the shortest path length ...
Blas Fernández +3 more
wiley +1 more source
ABSTRACT Examining the extent to which measurements of rotation matrices are close to each other is challenging due measurement noise. To overcome this, data is typically smoothed, and the Riemannian and Euclidean metrics are applied. However, if rotation matrices are not directly measured and are instead formed by eigenvectors of measured symmetric ...
P. D. Ledger +2 more
wiley +1 more source
Bidiagonal Decompositions and Accurate Computations for the Ballot Table and the Fibonacci Matrix
ABSTRACT Riordan arrays include many important examples of matrices. Here we consider the ballot table and the Fibonacci matrix. For finite truncations of these Riordan arrays, we obtain bidiagonal decompositions. Using them, algorithms to solve key linear algebra problems for ballot tables and Fibonacci matrices with high relative accuracy are derived.
Jorge Ballarín +2 more
wiley +1 more source
Definition and Computation of Tensor‐Based Generalized Function Composition
ABSTRACT Functions are fundamental to mathematics as they offer a structured and analytical framework to express relations between variables. While scalar and matrix‐based functions are well‐established, higher‐order tensor‐based functions have not been as extensively explored.
Remy Boyer
wiley +1 more source
Coordinate‐ and Spacetime‐Independent Quantum Physics
This article studies in the framework of quantum field theory in curved spacetime, if there exists a single zero‐rank‐tensor solution of a Klein‐Gordon PDE, being valid at once for the depicted spacetimes. The answer is shown to be affirmative, even for a class of such solutions having the standard applications in particle physics. ABSTRACT The concept
Viacheslav A. Emelyanov, Daniel Robertz
wiley +1 more source
On the Noisy Road to Open Quantum Dynamics: The Place of Stochastic Hamiltonians
Stochastic Hamiltonian formulations of open quantum dynamics are revisited, highlighting their roots in stochastic calculus. The connections among stochastic Hamiltonians, stochastic Schrödinger equations, and master‐equation approaches are made explicit.
Pietro De Checchi +3 more
wiley +1 more source
This work tackles the unresolved stability problem of heterogeneous quaternion‐valued BAM neural networks plagued by unknown parameters, time‐varying delays, and impulses. By synergizing Lyapunov theory with inequality techniques, we establish rigorous, yet practical, global stability conditions.
Xi Long, Yaqin Li
wiley +1 more source

