Periodic points of rational functions over finite fields
Abstract For q$q$ a prime power and ϕ$\phi$ a rational function with coefficients in Fq$\mathbb {F}_q$, let p(q,ϕ)$p(q,\phi)$ be the proportion of P1Fq$\mathbb {P}^1\left(\mathbb {F}_q\right)$ that is periodic with respect to ϕ$\phi$. Furthermore, if d$d$ is a positive integer, let Qd$Q_d$ be the set of prime powers coprime to d!$d!$ and let P(d,q ...
Derek Garton
wiley +1 more source
On the Terwilliger Algebra of the Group Association Scheme of the Symmetric Group Sym ( 7 )
ABSTRACT Terwilliger algebras are finite‐dimensional semisimple algebras that were first introduced by Paul Terwilliger in 1992 in studies of association schemes and distance‐regular graphs. The Terwilliger algebras of the conjugacy class association schemes of the symmetric groups Sym ( n ), for 3 ≤ n ≤ 6, have been studied and completely determined ...
Allen Herman+2 more
wiley +1 more source
Wall‐crossing for quasimaps to GIT stack bundles
Abstract We define the notion of ε$\epsilon$‐stable quasimaps to a GIT stack bundle, and study the wall‐crossing behavior of the resulting ε$\epsilon$‐quasimap theory as ε$\epsilon$ varies.
Shidhesh Supekar, Hsian‐Hua Tseng
wiley +1 more source
Algebraic relations between solutions of Painlevé equations
Abstract In this manuscript, we make major progress classifying algebraic relations between solutions of Painlevé equations. Our main contribution is to establish the algebraic independence of solutions of various pairs of equations in the Painlevé families; for generic coefficients, we show that all algebraic relations between solutions of equations ...
James Freitag, Joel Nagloo
wiley +1 more source
A Jordan–Chevalley decomposition beyond algebraic groups
Abstract We prove a decomposition of definable groups in o‐minimal structures generalizing the Jordan–Chevalley decomposition of linear algebraic groups. It follows that any definable linear group G$G$ is a semidirect product of its maximal normal definable torsion‐free subgroup N(G)$\mathcal {N}(G)$ and a definable subgroup P$P$, unique up to ...
Annalisa Conversano
wiley +1 more source
The Picard group in equivariant homotopy theory via stable module categories
Abstract We develop a mechanism of “isotropy separation for compact objects” that explicitly describes an invertible G$G$‐spectrum through its collection of geometric fixed points and gluing data located in certain variants of the stable module category.
Achim Krause
wiley +1 more source
Simple closed curves, non‐kernel homology and Magnus embedding
Abstract We consider the subspace of the homology of a covering space spanned by lifts of simple closed curves. Our main result is the existence of unbranched covers of surfaces where this is a proper subspace. More generally, for a fixed finite solvable quotient of the fundamental group we exhibit a cover whose homology is not generated by the lifts ...
Adam Klukowski
wiley +1 more source
Homological Lie brackets on moduli spaces and pushforward operations in twisted K‐theory
Abstract We develop a general theory of pushforward operations for principal G$G$‐bundles equipped with a certain type of orientation. In the case G=BU(1)$G={B\mathrm{U}(1)}$ and orientations in twisted K‐theory, we construct two pushforward operations, the projective Euler operation, whose existence was conjectured by Joyce, and the projective rank ...
Markus Upmeier
wiley +1 more source
R. Y. Sharp, Steps in commutative algebra (London Mathematical Society Student Texts 19, Cambridge University Press, Cambridge1990) pp. xii + 321, cloth 0 521 39338 8, £30, paper 0 521 39732 4, £10.95. [PDF]
openaire +2 more sources
openaire