Results 31 to 40 of about 451,945 (247)
This study examines the mechanical properties of triply periodic minimal surfaces (TPMS)‐based lattices, analyzing 36 architectures in elastic and plastic regimes. It evaluates the applicability of beam‐based scaling laws to TPMS lattices. Rigidity arises from the alignment of members with the load direction and solid regions preventing rotation.
Lucía Doyle+2 more
wiley +1 more source
This study presents a 3D representative volume element‐based simulation approach to predict mesoscopic residual stress and strain fields in silicon solid solution‐strengthened ductile cast iron. By modeling phase transformation kinetics with an enhanced Johnson–Mehl–Avrami–Kolmogorov model, the effects of varying cooling rates on residual stresses are ...
Lutz Horbach+6 more
wiley +1 more source
Thermally Induced Gelling Systems Based on Patchy Polymeric Micelles
A novel strategy to design thermally induced gelling systems with tunable material properties is reported. Polymeric mixed‐shell micelles displaying multiple thermosensitive patchy domains formed hydrogels by assembling into well‐entangled worm‐like network structures upon heating to body temperature. The patchy micelle design significantly affects the
Binru Han+9 more
wiley +1 more source
Ultrahigh Piezoelectricity in Truss‐Based Ferroelectric Ceramics Metamaterials
By leveraging the unique combination of polarization direction and loading state, ultrahigh piezoelectricity is achieved through careful tuning of the relative density and scaling ratio in truss‐based ferroelectric metamaterials. This approach enables the simultaneous realization of extremely high piezoelectric constants and ultralow dielectric ...
Jiahao Shi+6 more
wiley +1 more source
Self‐aligned gate transistors are developed with a single‐step dielectric passivation and fine‐tuning of source/drain electrode work function using phosphonic acid self‐assembled monolayers (SAM). This transistor architecture minimizes overlap capacitances and access resistance.
Linqu Luo+16 more
wiley +1 more source
From a database of 170 pentagonal 2D materials, 4 candidates exhibiting altermagnetic ordering are screened. Furthermore, the spin‐splitting and unconventional boundary states in the pentagonal 2D altermagnetic monolayer MnS2 are investigated. A MnS2‐based altermagnetic tunneling junction is designed and, through ab initio quantum transport simulations,
Jianhua Wang+8 more
wiley +1 more source
Topological Integer Additive Set-Sequential Graphs
Let $\mathbb{N}_0$ denote the set of all non-negative integers and $X$ be any non-empty subset of $\mathbb{N}_0$. Denote the power set of $X$ by $\mathcal{P}(X)$. An integer additive set-labeling (IASL) of a graph $G$ is an injective set-valued function $
Augustine, Germina+2 more
core +2 more sources
String theory and math: Why this marriage may last. Mathematics and dualities of quantum physics
String theory is changing the relationship between mathematics and physics. The central role is played by the phenomenon of duality, which is intrinsic to quantum physics and abundant in string theory. The relationship between mathematics and physics has
Mina Aganagic
semanticscholar +1 more source
Soft Open Bases and a Novel Construction of Soft Topologies from Bases for Topologies
Soft topology studies a structure on the collection of all soft sets on a given set of alternatives (the relevant attributes being fixed). It is directly inspired by the axioms of a topological space.
J. Alcantud
semanticscholar +1 more source
Reconfigurable Three‐Dimensional Superconducting Nanoarchitectures
3D superconducting nanostructures offer new possibilities for emergent physical phenomena. However, fabricating complex geometries remains challenging. Here 3D nanoprinting of complex 3D superconducting nanoarchitectures is established. As well as propagating superconducting vortices in 3D, anisotropic superconducting properties with geometric ...
Elina Zhakina+11 more
wiley +1 more source