Results 51 to 60 of about 273,916 (217)

Physics‐Embedded Neural Network: A Novel Approach to Design Polymeric Materials

open access: yesAdvanced Science, EarlyView.
Traditional black‐box models for polymer mechanics rely solely on data and lack physical interpretability. This work presents a physics‐embedded neural network (PENN) that integrates constitutive equations into machine learning. The approach ensures reliable stress predictions, provides interpretable parameters, and enables performance‐driven, inverse ...
Siqi Zhan   +8 more
wiley   +1 more source

Geometry and categorification

open access: yes, 2016
We describe a number of geometric contexts where categorification appears naturally: coherent sheaves, constructible sheaves and sheaves of modules over quantizations.
Webster, Ben
core  

Realization of a Bilayer Elastic Topological Insulator

open access: yesAdvanced Science, EarlyView.
Bilayer elastic wave topological insulators are experimentally realized, introducing the layer degree of freedom to access four topological phases. This enables diverse domain walls and transmission behaviors, including interlayer conversion and beam splitting.
Chengzhi Ma   +4 more
wiley   +1 more source

ML Workflows for Screening Degradation‐Relevant Properties of Forever Chemicals

open access: yesAdvanced Science, EarlyView.
The environmental persistence of per‐ and polyfluoroalkyl substances (PFAS) necessitates efficient remediation strategies. This study presents physics‐informed machine learning workflows that accurately predict critical degradation properties, including bond dissociation energies and polarizability.
Pranoy Ray   +3 more
wiley   +1 more source

Accelerated Screening of Halide Double Perovskites via Hybrid Density Functional Theory and Machine Learning for Thermoelectric Energy Conversion

open access: yesAdvanced Energy and Sustainability Research, EarlyView.
This study integrates hybrid density functional theory, Boltzmann transport theory, and machine learning to accelerate the discovery of lead‐free halide double perovskites for thermoelectric energy conversion. By screening 102 compounds, the authors identify high‐performing candidates such as Rb2GeI6 and Cs2SnBr6, offering a sustainable pathway toward ...
Souraya Goumri‐Said   +2 more
wiley   +1 more source

3D investigation and modeling of the geometric effects on porosity in packed beds

open access: yesAIChE Journal, EarlyView.
Abstract In porous beds, physical boundaries restrict particle arrangement, leading to inhomogeneous porosity. This paper reports on the porosity profiles that are the result of geometric effects on monodisperse packed beds in cylindrical and cubic arrangements. Special focus is given to the influence of edges and corners in cubic geometries.
Bastian Oldach   +3 more
wiley   +1 more source

What to Make and How to Make It: Combining Machine Learning and Statistical Learning to Design New Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley   +1 more source

CrossMatAgent: AI‐Assisted Design of Manufacturable Metamaterial Patterns via Multi‐Agent Generative Framework

open access: yesAdvanced Intelligent Discovery, EarlyView.
CrossMatAgent is a multi‐agent framework that combines large language models and diffusion‐based generative AI to automate metamaterial design. By coordinating task‐specific agents—such as describer, architect, and builder—it transforms user‐provided image prompts into high‐fidelity, printable lattice patterns.
Jie Tian   +12 more
wiley   +1 more source

Insights into the Controlled Formation of Zr‐Based Metal–Organic Gels: Linking Macroscopic Properties with Molecular Information from Solution State NMR

open access: yesAngewandte Chemie, EarlyView.
Real time STD/SDTD NMR unveils water structuring during UiO‐66 gelation under mild, acid‐free conditions compatible with biomolecule encapsulation. This approach bridges molecular‐scale solvent ordering with macroscopic gel properties, unlocking mechanistic insight for the rational design of MOF gels.
Juan C. Muñoz‐García   +5 more
wiley   +2 more sources

Deep Learning‐Assisted Design of Mechanical Metamaterials

open access: yesAdvanced Intelligent Discovery, EarlyView.
This review examines the role of data‐driven deep learning methodologies in advancing mechanical metamaterial design, focusing on the specific methodologies, applications, challenges, and outlooks of this field. Mechanical metamaterials (MMs), characterized by their extraordinary mechanical behaviors derived from architected microstructures, have ...
Zisheng Zong   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy