Results 51 to 60 of about 4,958 (161)
Synthetic Antiferromagnetic Designer Nanodisks for High‐Performance Magnetic Separation
Micromagnetic‐modeling‐based design and scalable fabrication of synthetic antiferromagnet (SAF) magnetic disk particles (MDPs) using sputter deposition enable high‐performance magnetic separation. The SAF MDPs achieve high colloidal stability and magnetic responsiveness and enable efficient magnetic separation, outperforming conventional particles ...
Subas Scheibler +14 more
wiley +1 more source
PGXTEC) liquid technology is utilized to develop highly respirable yeast beta‐glucan (YBG) microparticles for the treatment of pulmonary fibrosis. Compared to conventionally processed spray‐dried YBG, PGXTEC‐YBG exhibits greatly improved aerodynamic properties, enhanced pro‐fibrotic macrophage uptake, and effective downregulation of pro‐fibrotic ...
Nate Dowdall +14 more
wiley +1 more source
This study introduces the first miniaturized, patient‐specific carotid artery model created via 3D printing using GelMA with embedded vascular cells. Combining CFD, PIV, and flow perfusion, the model replicates anatomically dependent hemodynamics and cellular responses.
Jorge A. Catano +7 more
wiley +1 more source
Seeing inside the Body Using Wearable Sensing and Imaging Technologies
This review explores wearable technologies for noninvasive internal health monitoring. It categorizes approaches into indirect sensing (e.g., bioelectrical and biochemical signals) and direct imaging (e.g., wearable ultrasound and EIT), highlighting multimodal integration and system‐level innovation toward personalized, continuous healthcare.
Sumin Kim +3 more
wiley +1 more source
This study presents a bone‐on‐a‐chip platform incorporating TPMS scaffolds to study geometry‐dependent osteogenesis under dynamic flow. By tuning pore shape and solidity, it precisely controls mechanical cues, revealing how topological features and shear stress affect osteogenic differentiation and matrix formation.
Donggyu Kim +5 more
wiley +1 more source
AI‐Assisted Design and Evaluation of SLM‐Ti64 Implants for Enhanced Bone Regeneration
AI‐driven simulations of biological healing, combining biomechanical modeling and machine learning, enable personalized orthopedic treatments. By decoding healing patterns influenced by implants and patient‐specific factors, this approach advances fracture repair understanding, optimizes implant design, and supports precision medicine and sustainable ...
Muhammad Usama Zaheer +3 more
wiley +1 more source
Computational Modeling of Reticular Materials: The Past, the Present, and the Future
Reticular materials are advanced materials with applications in emerging technologies. A thorough understanding of material properties at operating conditions is critical to accelerate the deployment at an industrial scale. Herein, the status of computational modeling of reticular materials is reviewed, supplemented with topical examples highlighting ...
Wim Temmerman +3 more
wiley +1 more source
Hierarchically MOF‐Based Porous Monolith Composites for Atmospheric Water Harvesting
This review explores the design of hierarchical porous materials for atmospheric water harvesting, focusing on metal‐organic frameworks (MOFs) and porous monoliths. Emphasis is placed on integrating MOF nanoscale porosity with the microscale channels of monolithic scaffolds to enhance sorption‐desorption performance.
Mahyar Panahi‐Sarmad +7 more
wiley +1 more source
Adsorption and Separation by Flexible MOFs
Flexible metal–organic frameworks (MOFs) present significant potential for gas storage and separation due to their structural dynamic. This review explores the rationale behind the flexible MOFs' enhanced working capacity and separation factors. It also addresses key challenges, including phase transition kinetics, crystal robustness, cycling, shaping,
Irena Senkovska +4 more
wiley +1 more source
Nonlocal Conduction in a Metawire
A 1D metawire composed of twisted copper wires is designed and realized. This metamaterial exhibits pronounced effects of nonlocal electric conduction according to Ohm's law. The current at one location not only depends on the electric field at that location but also on other locations.
Julio Andrés Iglesias Martínez +3 more
wiley +1 more source

