Results 81 to 90 of about 1,343,925 (281)

Role of Crosslinking and Backbone Segmental Dynamics on Ion Transport in Hydrated Anion‐Conducting Polyelectrolytes

open access: yesAdvanced Functional Materials, EarlyView.
Thermally crosslinked poly(2‐vinylpyridine)‐based anion conducting polyelectrolytes have been synthesized. The segmental dynamics of these polyelectrolytes have been systematically modified by varying the degree of crosslinking. Both the experimental and simulation results indicate that segmental dynamics have a limited influence on ion transport in ...
Zhongyang Wang   +11 more
wiley   +1 more source

Reconfigurable 3D Magnetic Nanoarchitectures

open access: yesAdvanced Functional Materials, EarlyView.
This experimental study confirms that 3D magnetic tetrapods grown by focused electron beam‐induced deposition exhibit sequential, controllable magnetization reversal in the individual nanowire legs. The magnetic state of the nanoarchitecture can be controlled individually, on‐demand, through a variation of the direction and magnitude of the applied ...
Sabri Koraltan   +8 more
wiley   +1 more source

Quantifying Spin Defect Density in hBN via Raman and Photoluminescence Analysis

open access: yesAdvanced Functional Materials, EarlyView.
An all‐optical method is presented for quantifying the density of boron vacancy spin defects in hexagonal boron nitride (hBN). By correlating Raman and photoluminescence signals with irradiation fluence, defect‐induced Raman modes are identified and established an relationship linking optical signatures to absolute defect densities. This enables direct
Atanu Patra   +8 more
wiley   +1 more source

Electrochemical Formation of BiVO4/BiPO4 Photoanodes for Enhanced Selectivity toward H2O2 Generation

open access: yesAdvanced Functional Materials, EarlyView.
In acidic KPi, V dissolves from the BiVO4 lattice, while adsorbed phosphate reacts with the electrode under an external bias, forming a BiPO4 surface layer. This BiPO4 layer exhibits stronger bicarbonate adsorption, redirecting the water oxidation pathway toward two‐electron H2O2 production.
Kaijian Zhu   +12 more
wiley   +1 more source

Atomically Revealing Bulk Point Defect Dynamics in Hydrogen‐Driven γ‐Fe2O3 → Fe3O4 → FeO Transformation

open access: yesAdvanced Functional Materials, EarlyView.
In situ TEM uncovers the atomic‐scale mechanisms underlying hydrogen‐driven γ‐Fe2O3→Fe3O4→FeO reduction. In γ‐Fe2O3, oxygen vacancies cluster around intrinsic Fe vacancies, leading to nanopore formation, whereas in Fe3O4, vacancy aggregation is suppressed, preserving a dense structure.
Yupeng Wu   +14 more
wiley   +1 more source

Inhalability and Bioactivity of Spray‐Dried versus Pressurized Gas eXpanded Liquid Technology‐Processed Yeast Beta‐Glucan Microparticles for Anti‐Fibrotic Therapies

open access: yesAdvanced Healthcare Materials, EarlyView.
PGXTEC) liquid technology is utilized to develop highly respirable yeast beta‐glucan (YBG) microparticles for the treatment of pulmonary fibrosis. Compared to conventionally processed spray‐dried YBG, PGXTEC‐YBG exhibits greatly improved aerodynamic properties, enhanced pro‐fibrotic macrophage uptake, and effective downregulation of pro‐fibrotic ...
Nate Dowdall   +14 more
wiley   +1 more source

Mesoporous Bioactive Glasses: A Powerful Tool in Tissue Engineering and Drug Delivery

open access: yesAdvanced Healthcare Materials, EarlyView.
This work is a comprehensive revision of bioactive glasses (BGs), pioneered by Prof. L.L. Hench, which are key in bone repair and regenerative medicine. Sol–gel methods and mesoporous designs enhanced their bioactivity, ions, and drug delivery. BGs now support gene therapy and 3D‐printed scaffolds, enabling personalized, multifunctional treatments in ...
Natividad Gómez‐Cerezo   +3 more
wiley   +1 more source

Guides for Developing Hundreds of Novel Chiral MXenes and MBenes Nanosheets/Quantum Dots for Next‐Generation Chiral Engineered Biomaterials Applications

open access: yesAdvanced Healthcare Materials, EarlyView.
The emerging field of MXene/MBene materials has progressed rapidly, advancing diverse research fields, including biomedical engineering, biomedicine, agriculture, and the environment. This nanobiotechnology can tackle longstanding challenges in these areas.
Alireza Rafieerad, Ahmad Amiri
wiley   +1 more source

Home - About - Disclaimer - Privacy