Results 51 to 60 of about 110,884 (185)
Noncommutative spaces with twisted symmetries and second quantization
In a minimalistic view, the use of noncommutative coordinates can be seen just as a way to better express non-local interactions of a special kind: 1-particle solutions (wavefunctions) of the equation of motion in the presence of an external field may ...
Fiore, Gaetano
core
A Cross‐Disciplinary Analysis of AI Policies in Academic Peer Review
ABSTRACT Rapid advances of artificial intelligence (AI) have substantially impacted the field of academic publishing. This study examines AI integration in peer review by analysing policies from 439 high‐ and 363 middle‐impact factor (IF) journals across disciplines. Using grounded theory, we identify patterns in AI policy adoption. Results show 83% of
Zhongshi Wang, Mengyue Gong
wiley +1 more source
FTheoryTools: Advancing Computational Capabilities for F‐Theory Research
Abstract A primary goal of string phenomenology is to identify realistic four‐dimensional physics within the landscape of string theory solutions. In F‐theory, such solutions are encoded in the geometry of singular elliptic fibrations, whose study often requires particularly challenging and cumbersome computations.
Martin Bies +2 more
wiley +1 more source
Splitting the difference: Computations of the Reynolds operator in classical invariant theory
Abstract If G$G$ is a linearly reductive group acting rationally on a polynomial ring S$S$, then the inclusion SG↪S$S^{G} \hookrightarrow S$ possesses a unique G$G$‐equivariant splitting, called the Reynolds operator. We describe algorithms for computing the Reynolds operator for the classical actions as in Weyl's book.
Aryaman Maithani
wiley +1 more source
Modeling (∞,1)$(\infty,1)$‐categories with Segal spaces
Abstract In this paper, we construct a model structure for (∞,1)$(\infty,1)$‐categories on the category of simplicial spaces, whose fibrant objects are the Segal spaces. In particular, we show that it is Quillen equivalent to the models of (∞,1)$(\infty,1)$‐categories given by complete Segal spaces and Segal categories.
Lyne Moser, Joost Nuiten
wiley +1 more source
Module structure of Weyl algebras
Abstract The seminal paper (Stafford, J. Lond. Math. Soc. (2) 18 (1978), no. 3, 429–442) was a major step forward in our understanding of Weyl algebras. Beginning with Serre's Theorem on free summands of projective modules and Bass' Stable Range Theorem in commutative algebra, we attempt to trace the origins of this work and explain how it led to ...
Gwyn Bellamy
wiley +1 more source
On the paper “Bundle gerbes” by Michael Murray
Abstract The article gives a brief survey of Murray's notion of bundle gerbes as introduced in his 1996 paper published in the Journal of the London Mathematical Society, together with some of its applications.
Nigel Hitchin
wiley +1 more source
The founding of the Journal of the London Mathematical Society and its first volume
Abstract That the Journal of the London Mathematical Society came into existence in 1926 can be ascribed to the efforts of one man: G.H. Hardy. As one of the two Secretaries of the Society, Hardy was aware of the increasing demand for publication space in the Society's Proceedings, and the need for an outlet for shorter papers.
June Barrow‐Green
wiley +1 more source
A theorem concerning Fourier transforms: A survey
Abstract In this note, we highlight the impact of the paper G. H. Hardy, A theorem concerning Fourier transforms, J. Lond. Math. Soc. (1) 8 (1933), 227–231 in the community of harmonic analysis in the last 90 years, reviewing, on one hand, the direct generalizations of the main results and, on the other hand, the different connections to related areas ...
Aingeru Fernández‐Bertolin, Luis Vega
wiley +1 more source
Random planar trees and the Jacobian conjecture
Abstract We develop a probabilistic approach to the celebrated Jacobian conjecture, which states that any Keller map (i.e. any polynomial mapping F:Cn→Cn$F\colon \mathbb {C}^n \rightarrow \mathbb {C}^n$ whose Jacobian determinant is a non‐zero constant) has a compositional inverse which is also a polynomial. The Jacobian conjecture may be formulated in
Elia Bisi +5 more
wiley +1 more source

