Results 21 to 30 of about 110,516 (135)
On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems [PDF]
Bi-Hamiltonian structures are of great importance in the theory of integrable Hamiltonian systems. The notion of compatibility of symplectic structures is a key aspect of bi-Hamiltonian systems.
Santoprete, Manuele
core +3 more sources
Toeplitz Operators, K\"ahler Manifolds, and Line Bundles [PDF]
This is a survey paper. We discuss Toeplitz operators in K\"ahler geometry, with applications to geometric quantization, and review some recent developments.Comment: This is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in ...
Foth, Tatyana
core +3 more sources
The Symplectic Geometry of Polygons in the 3-Sphere [PDF]
We study the symplectic geometry of the moduli spaces ${{M}_{r}}={{M}_{r}}\left( {{\mathbb{S}}^{3}} \right)$ of closed $n$ -gons with fixed side-lengths in the 3-sphere.
T. Treloar
semanticscholar +1 more source
From double Lie groupoids to local Lie 2-groupoids [PDF]
We apply the bar construction to the nerve of a double Lie groupoid to obtain a local Lie 2-groupoid. As an application, we recover Haefliger's fundamental groupoid from the fundamental double groupoid of a Lie groupoid.
A. Dold +17 more
core +3 more sources
Non-commutative Symplectic Geometry, Quiver varieties,$\,$ and$\,$ Operads [PDF]
Quiver varieties have recently appeared in various different areas of Mathematics such as representation theory of Kac-Moody algebras and quantum groups, instantons on 4-manifolds, and resolutions Kleinian singularities.
V. Ginzburg
semanticscholar +1 more source
Nonrational, nonsimple convex polytopes in symplectic geometry [PDF]
In this research announcement we associate to each convex polytope, possibly nonrational and nonsimple, a family of compact spaces that are stratified by quasifolds, i.e. the strata are locally modelled by $\R^k$ modulo the action of a discrete, possibly
Battaglia, Fiammetta, Prato, Elisa
core +3 more sources
Compactness results in Symplectic Field Theory
This is one in a series of papers devoted to the foundations of Symplectic Field Theory sketched in [Y Eliashberg, A Givental and H Hofer, Introduction to Symplectic Field Theory, Geom. Funct. Anal. Special Volume, Part II (2000) 560--673].
Bourgeois, F +4 more
core +5 more sources
A time-extended Hamiltonian formalism
A Poisson structure on the time-extended space R x M is shown to be appropriate for a Hamiltonian formalism in which time is no more a privileged variable and no a priori geometry is assumed on the space M of motions.
Asorey +17 more
core +1 more source
On the geometry of almost $\mathcal{S}$-manifolds [PDF]
An $f$-structure on a manifold $M$ is an endomorphism field $\phi$ satisfying $\phi^3+\phi=0$. We call an $f$-structure {\em regular} if the distribution $T=\ker\phi$ is involutive and regular, in the sense of Palais.
Fitzpatrick, Sean
core +3 more sources
Vector bundles on bielliptic surfaces: Ulrich bundles and degree of irrationality
Abstract This paper deals with two problems about vector bundles on bielliptic surfaces. The first is to give a classification of Ulrich bundles on such surfaces S$S$, which depends on the topological type of S$S$. In doing so, we study the weak Brill–Noether property for moduli spaces of sheaves with isotropic Mukai vector. Adapting an idea of Moretti
Edoardo Mason
wiley +1 more source

