Results 261 to 270 of about 374,863 (314)
Some of the next articles are maybe not open access.

Generating equations approach for quadratic matrix equations

Numerical Linear Algebra with Applications, 1999
The author gives an algorithm for the numerical solution of a quadratic matrix equation with the Hamiltonian matrix. The algorithm transforms the Hamiltonian matrix into a skew-Hamiltonian one. This is then transformed in several steps into a block diagonal matrix with the left upper block having again a block-diagonal structure with blocks of order 1 ...
openaire   +2 more sources

Matrix operator equations

Journal of Applied and Industrial Mathematics, 2008
This article is devoted to the theory and applications of matrix operator equations in normed spaces. We describe in detail the general properties of matrix operators and their representing matrices. As the indexing set we take an arbitrary countable set.
M. M. Lavrent’ev   +2 more
openaire   +1 more source

Solving Matrix Polynomial Equations

Cybernetics and Systems Analysis
Matrix equations and systems of matrix equations are widely used in problems of optimization of control systems, in mathematical economics. However, methods for solving them are developed only for the most popular matrix equations – the Riccati and Lyapunov equations, and there is no universal approach to solving problems of this class.
openaire   +1 more source

On Riccati Matrix Differential Equations

Results in Mathematics, 1997
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Knobloch, H. W., Pohl, M.
openaire   +1 more source

Linear Matrix Equations

1995
Abstract In this chapter we present a self-contained account of some well-known facts concerning solutions of linear matrix equations. Our attention is restricted mainly to the Lyapunov and Stein equations: SA-BS=Γ, and S-BSA=Γ, respectively (see equations (5.2.3) and (5.2.4) below). In particular, their symmetric forms (when B = A*, Γ *
Peter Lancaster, Leiba Rodman
openaire   +1 more source

Appendix: Matrix Equations

2021
The Lyapunov equation and the algebraic Riccati equation are treated in depth. The Lyapunov equation arises as the equation for the asymptotic covariance matrix of the state of a stationary Gaussian system. The algebraic Riccati equation arises in the Kalman filter, in stochastic control, and in stochastic realization of a Gaussian system.
openaire   +1 more source

Matrix Rotational Equations

1971
We take up here with Eq. 9 of Lecture 12, and consider the last term $$\sum\limits_{j,k} {{m^j}{{\underline d }^{ij}} \times } {\underline {\ddot b} ^{kj}}$$ .
Peter W. Likins   +2 more
openaire   +1 more source

Lagrange matrix equations

Russian Mathematics, 2015
In this paper, we proceed with studying matrix equations over “skew series”. We establish conditions for splitting a Lagrange matrix equation into a set of scalar differential equations. We consider diagonal, triangular, nil-triangular, and dual-diagonal forms of its solution.
openaire   +1 more source

Solution of Modified Matrix Equations

SIAM Journal on Numerical Analysis, 1987
The purpose of this article is to present a general, computationally efficient, rank r matrix modification scheme for the solution of the linear matrix equation \(H'x'=u'\); it is assumed that the matrix H' differs by a matrix of low rank from a matrix H of a system whose solution is known, or easily computed.
openaire   +1 more source

The biofilm matrix: multitasking in a shared space

Nature Reviews Microbiology, 2022
Hans-Curt Flemming   +2 more
exaly  

Home - About - Disclaimer - Privacy