Results 111 to 120 of about 155,194 (319)

Cloud cavitation on an oscillating hydrofoil [PDF]

open access: yes, 1994
Cloud cavitation, often formed by the breakdown of a sheet or vortex cavity, is believed to be responsible for much of the noise and erosion damage that occurs under cavitating conditions.
Brennen, C. E.   +2 more
core  

Geometrically Templated, Ultra‐Lightweight and High Strength Soap Films from Lyotropic Liquid Crystalline Graphene Oxide/Polymer Composites

open access: yesAdvanced Functional Materials, EarlyView.
Shellular materials form spontaneously by dip coating the primitive triply periodic minimal surface (TPMS) wireframe in an aqueous solution of lyotropic liquid crystalline graphene oxide (GO) nanosheets mixed with polymers. Regulated by surface tension, GO nanosheets align on the polymer soap film as the stress builds up during drying.
Yinding Chi   +9 more
wiley   +1 more source

Reconfigurable Microenvironments Uncover Mechano‐Sensing Timescales and Direct Cell Polarity

open access: yesAdvanced Functional Materials, EarlyView.
A synthetic DNA‐crosslinked cell culture matrix enables control over the mechanical microenvironment surrounding cells. Independent tuning of stiffness and stress relaxation uncovers distinct timescales of mechano‐sensing that regulate cell behavior.
Syuan‐Ku Hsiao   +4 more
wiley   +1 more source

Emerging 2D Materials and Their Hybrid Nanostructures for Label‐Free Optical Biosensing: Recent Progress and Outlook

open access: yesAdvanced Functional Materials, EarlyView.
This review highlights recent advances in label‐free optical biosensors based on 2D materials and rationally designed mixed‐dimensional nanohybrids, emphasizing their synergistic effects and novel functionalities. It also discusses multifunctional sensing platforms and the integration of machine learning for intelligent data analysis.
Xinyi Li, Yonghao Fu, Yuehe Lin, Dan Du
wiley   +1 more source

Simplified Approach to Evaluate Cavitation Intensity Based on Time Information on Imposed Pressure in Liquid

open access: yesFluids
Cavitation damage is an important research topic in fluid–structure interactions, such as those being studied using the mercury target for the pulsed neutron source at the Materials Life Science Experimental Facility/Japan Proton Accelerator Complex ...
Hiroyuki Kawashima   +3 more
doaj   +1 more source

Functional Materials for Environmental Energy Harvesting in Smart Agriculture via Triboelectric Nanogenerators

open access: yesAdvanced Functional Materials, EarlyView.
This review explores functional and responsive materials for triboelectric nanogenerators (TENGs) in sustainable smart agriculture. It examines how particulate contamination and dirt affect charge transfer and efficiency. Environmental challenges and strategies to enhance durability and responsiveness are outlined, including active functional layers ...
Rafael R. A. Silva   +9 more
wiley   +1 more source

Harnessing Non‐Covalent Protein–Protein Interaction Domains for Production of Biocatalytic Materials Systems

open access: yesAdvanced Functional Materials, EarlyView.
Non‐covalent protein–protein interactions mediated by SH3, PDZ, or GBD domains enable the self‐assembly of stable and biocatalytically active hydrogel materials. These soft materials can be processed into monodisperse foams that, once dried, exhibit enhanced mechanical stability and activity and are easily integrated into microstructured flow ...
Julian S. Hertel   +5 more
wiley   +1 more source

Cavitation Event Rates and Nuclei Distributions [PDF]

open access: yes, 1993
This paper examines the relationship between the cavitation event rates on axisymmetric headforms and the nuclei distributions in the incident flow.
Brennen, C. E.   +2 more
core  

Cavitation of Electrons Bubbles in Liquid Helium Below saturation Pressure

open access: yes, 2005
We have used a Hartree-type electron-helium potential together with a density functional description of liquid $^4$He and $^3$He to study the explosion of electron bubbles submitted to a negative pressure.
A. Guirao   +50 more
core   +2 more sources

Mechanically Robust Phase‐Change Multiscale‐Architected Metastructures Integrating Asymmetric MXene/T‐CNF Aerogel for Thermal Energy Storage and Electromagnetic Interference Shielding

open access: yesAdvanced Functional Materials, EarlyView.
A multiscale‐architected phase change material (PCM) composite combines latent heat storage, PCM leakage proof, directional thermal conduction, electromagnetic interference (EMI) shielding, and mechanical reinforcement via asymmetric MXene/cellulose aerogel and 3D‐printed metastructures, enabling effective thermal regulation, strong EMI shielding, and ...
Jiheon Kim   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy