Results 111 to 120 of about 830,855 (309)

Numerical Study on the Influence of Suction near Expansion Corner on Separation Bubble

open access: yesAerospace
Suction is an important control method in the shock wave and boundary layer interaction (SWBLI). Aimed at the problem of separation bubbles induced at the expansion corners, this study investigates the influence of suction on both the dimensions of ...
Yaowen Zhang   +3 more
doaj   +1 more source

Tetrahedral Tilting and Lithium‐Ion Transport in Halide Argyrodites Prepared by Rapid, Microwave‐Assisted Synthesis

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a rapid, microwave‐assisted synthetic method for halide argyrodite solid‐state electrolytes Li6PS5X${\rm Li}_6 {\rm PS}_5X$ (X=$X =$ Cl−${\rm Cl}^-$, Br−${\rm Br}^-$, I−${\rm I}^-$). Microwave synthesis increases S2−${\rm S}^{2-}$/X−$X^-$ site disorder and rotational disorder of the isolated PS43−${{\mathrm{PS}}_{4}}^{3 ...
Austin M. Shotwell   +4 more
wiley   +1 more source

Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications

open access: yesAdvanced Functional Materials, EarlyView.
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai   +8 more
wiley   +1 more source

Cu‐Based MOF/TiO2 Composite Nanomaterials for Photocatalytic Hydrogen Generation and the Role of Copper

open access: yesAdvanced Functional Materials, EarlyView.
HKUST‐1/TiO2 composite materials show a very high photocatalytic hydrogen evolution rate which increases as a function of the irradiation time until reaching a plateau and even surpasses the performance of the 1%Pt/TiO2 material after three photocatalytic cycles.
Alisha Khan   +9 more
wiley   +1 more source

Surface Tension Measurement by Maximum Bubble Pressure Method

open access: yes, 2018
The principal objective of the present work is to measure the surface tension of liquids by the use of a method that it is not commonly found in books but it is based on very basic principles of Fluid Mechanics. This thesis is purely experimental. The measurement of the surface tension by The Maximum Bubble Pressure Method can be implemented with basic
openaire   +1 more source

Ultrafast Room‐Temperature Nanofabrication via Ozone‐Based Gas‐Phase Metal‐Assisted Chemical Etching for High‐Performance Silicon Photodetectors

open access: yesAdvanced Functional Materials, EarlyView.
Ozone‐based gas‐phase metal‐assisted chemical etching enables unprecedented room‐temperature fabrication of high‐quality silicon nanowires. The superior oxidation potential of O3 drives rapid vertical etching (1 µm min−1) while maintaining exceptional structural integrity. The pristine nanowire surfaces enable high‐performance core‐shell photodetectors
Hyein Cho   +11 more
wiley   +1 more source

Mapping strain and structural heterogeneities around bubbles in amorphous ionically conductive Bi$_2$O$_3$ [PDF]

open access: yesarXiv
While amorphous materials are often approximated to have a statistically homogeneous atomic structure, they frequently exhibit localized structural heterogeneity that challenges simplified models. This study uses 4D scanning transmission electron microscopy to investigate the strain and structural modifications around gas bubbles in amorphous Bi$_2$O ...
arxiv  

Hydrogel Adhesive Integrated‐Microstructured Electrodes for Cuff‐Free, Less‐Invasive, and Stable Interface for Vagus Nerve Stimulation

open access: yesAdvanced Healthcare Materials, EarlyView.
In this study, a cuff‐free, less‐invasive surgical approach for vagus nerve stimulation (VNS) by combining ultrathin Y‐shaped kirigami electrodes is developed with a chemically cross‐linked hydrogel adhesive (hydrogel‐kirigami). Unlike conventional cuff implantation, which may damage nerves and nearby critical vessels, this new technique minimizes ...
Jae Young Park   +9 more
wiley   +1 more source

Bioprinting Perfusable and Vascularized Skeletal Muscle Flaps for the Treatment of Volumetric Muscle Loss

open access: yesAdvanced Healthcare Materials, EarlyView.
Volumetric muscle loss (VML) due to trauma or surgery, often leads to physical impairments. Traditional treatments rely on autologous flaps, limited by muscle availability often leading to donor site morbidity. This study presents multimodal bioprinting as an innovative approach for fabricating vascularized muscle flaps with 3D‐printed macrovessels ...
Eliana O. Fischer   +8 more
wiley   +1 more source

Bridging scales in multiscale bubble growth dynamics with correlated fluctuations using neural operator learning [PDF]

open access: yesarXiv
The intricate process of bubble growth dynamics involves a broad spectrum of physical phenomena from microscale mechanics of bubble formation to macroscale interplay between bubbles and surrounding thermo-hydrodynamics. Traditional bubble dynamics models including atomistic approaches and continuum-based methods segment the bubble dynamics into ...
arxiv  

Home - About - Disclaimer - Privacy