Results 151 to 160 of about 1,621,703 (196)
Some of the next articles are maybe not open access.
Die Maximum-Likelihood-Methode
1970Die Verteilung der Zufallsvariablen X hange von einem unbekannten Parameter θ ab. θ gehore zu einer Menge Ω von Parametern.- Die Wahrscheinlichkeitsdichte f(x,θ) ist eine Funktion mit dem Stichprobenraum ae als Definitionsmenge und ℝ als Wertmenge. Fast man sie aber bei festgehaltenem x als Funktion mit der Parametermenge Ω als Definitionsmenge auf, so
openaire +1 more source
Bayes and Maximum Likelihood Methods
2010While the parameter estimation methods presented so far assumed that the parameters θ and the observations of the output y are deterministic values, the parameters themselves and/or the output will now be seen in a stochastic view as a series of random variables.
Rolf Isermann, Marco Münchhof
openaire +1 more source
Phylogenetic Inference: Maximum Likelihood Methods
2000Abstract The idea of using a maximum likelihood (ML) method for phylogenetic inference was first presented by Cavalli-Sforza and Edwards (1967) for gene frequency data, but they encountered a number of problems in implementing the method.
Masatoshi Nei, Sudhir Kumar
openaire +1 more source
Methods for maximum-likelihood deconvolution
Journal of the Optical Society of America A, 1996An alternative approach to the maximum-likelihood solution of deconvolution problems is presented. The resulting algorithms are faster converging than the conventional Richardson–Lucy and clean algorithms, as well as being more flexible when one is dealing with different types of noise.
openaire +1 more source
The method of maximum likelihood
1998Abstract Consider a random variable x distributed according to a p.d.f. f(x; θ). Suppose the functional form of f(x; θ) is known, but the value of at least one parameter θ (or parameters θ = (θ 1, … , θ m)) are not known. That is, f ( x; θ) represents a composite hypothesis for the p.d.f. (cf. Section 4.1).
openaire +1 more source
The Method of Maximum Likelihood
1999In the last chapter we introduced the concept of parameter estimation. We have also described the desirable properties of estimators, though without specifying how such estimators can be constructed in a particular case. We have derived estimators only for the important quantities expectation value and variance. We now take on the general problem.
openaire +1 more source
14 Nonparametric maximum likelihood methods
1997Publisher Summary This chapter discusses nonparametric maximum likelihood methods. The nonparametric maximum likelihood (NPML) method is a direct attack, via the likelihood principle, on the problem of dealing with an unknown distribution function in estimation or testing.
openaire +1 more source
Die Methode der „Maximum Likelihood“
2013Wir hatten uns bereits im letzten Kapitel mit dem Problem der Schatzung der Parameter einer Verteilung durch Stichproben beschaftigt und dabei die wunschenswerten Eigenschaften von Schatzfunktionen diskutiert, ohne jedoch eine Vorschrift anzugeben, wie man im Einzelfall solche Schatzfunktionen findet.
openaire +1 more source

