Results 241 to 250 of about 35,611 (258)
Some of the next articles are maybe not open access.

Almost MDS Codes

Designs, Codes and Cryptography, 1996
A linear \([n,k,d]\) code \(C\) over the finite field \(F_q\) is called almost maximum distance separable (AMDS for short) if its Singleton defect \(s(C) = n-k+1-d\) is one. A set of \(n\) points in the projective space \(PG(r,q)\) over \(F_q\) of dimension \(r\) is called \(n\)-track if every \(r\) of the points are not contained in a subspace of ...
openaire   +1 more source

New Quantum MDS Codes From Negacyclic Codes

IEEE Transactions on Information Theory, 2013
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Kai, Xiaoshan, Zhu, Shixin
openaire   +2 more sources

Extending MDS Codes

Annals of Combinatorics, 2005
An MDS code over an alphabet of size \(q\) is a set of length \(n\) vectors with \(q^k\) elements where the minimum distance \(d\) satisfies \(d=n-k+1.\) Any MDS code satisfies the bound \(n \leq q+k-1.\) If equality is met in this bound the code is said to be of maximal length.
openaire   +1 more source

Affine MDS-codes on Groups

Journal of Geometry, 1993
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Karzel, Helmut, Maxson, Carl J.
openaire   +1 more source

MDS Multidimensional Convolutional Codes

published
Abreu, Zita   +2 more
openaire   +2 more sources

Constacyclic Codes and Some New Quantum MDS Codes

IEEE Transactions on Information Theory, 2014
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Kai, Xiaoshan, Zhu, Shixin, Li, Ping
openaire   +1 more source

MDS self-dual codes

International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings., 2004
In this paper we develop a complete generalization of the building-up method [J.-L. Kim, (2001)] for the Euclidean and Hermitian self-dual codes over finite fields GF(q). Using this method we construct many new Euclidean and Hermitian self-dual MDS (or near MDS) codes of length up to 12 over various finite fields GF(q), where q=8, 9, 16, 25, 32, 41, 49,
null Jon-Lark Kim, null Yoonjin Lee
openaire   +1 more source

Irregular MDS Array Codes

IEEE Transactions on Information Theory, 2014
In this paper, we extend the concept of maximum-distance separable (MDS) array codes to a larger class of codes, where the array columns contain a variable number of data and parity symbols and the codewords cannot be arranged, in general, in a regular array structure with equal column length.
Filippo Tosato, Magnus Sandell
openaire   +1 more source

On near-MDS codes

Proceedings of 1994 IEEE International Symposium on Information Theory, 1995
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Dodunekov, Stefan, Landgev, Ivan
openaire   +1 more source

On quantum MDS codes

International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings., 2004
We construct maximum distance separable quantum error-correcting codes. The codes are defined over q-dimensional quantum systems, where q is any prime power. The construction yields quantum MDS codes of length up to q+1 for all possible dimensions and some quantum MDS codes of length up to q2+1.
Rötteler, M., Grassl, M., Beth, T.
openaire   +1 more source

Home - About - Disclaimer - Privacy