Results 1 to 10 of about 564,094 (221)
The hyperbolic mean curvature flow [PDF]
We introduce a geometric evolution equation of hyperbolic type, which governs the evolution of a hypersurface moving in the direction of its mean curvature vector.
LeFloch, Philippe G., Smoczyk, Knut
core +6 more sources
Mean curvature flow without singularities [PDF]
We study graphical mean curvature flow of complete solutions defined on subsets of Euclidean space. We obtain smooth long time existence. The projections of the evolving graphs also solve mean curvature flow. Hence this approach allows to smoothly flow through singularities by studying graphical mean curvature flow with one additional dimension.
Schnürer, Oliver C.+1 more
arxiv +10 more sources
Mean curvature flow with obstacles [PDF]
We consider the evolution of fronts by mean curvature in the presence of obstacles. We construct a weak solution to the flow by means of a variational method, corresponding to an implicit time-discretization scheme.
Almeida, Luís+2 more
core +10 more sources
A remark on soliton equation of mean curvature flow [PDF]
In this note, we consider self-similar immersions of the mean curvature flow and show that a graph solution of the soliton equation, provided it has bounded derivative, converges smoothly to a function which has some special properties (see Theorem 1.1 ...
Li Ma, Yang Yang
doaj +2 more sources
Mean curvature flow is the negative gradient flow of volume, so any hypersurface flows through hypersurfaces in the direction of steepest descent for volume and eventually becomes extinct in finite time. Before it becomes extinct, topological changes can
Colding, Tobias+2 more
core +4 more sources
The mean curvature at the first singular time of the mean curvature flow [PDF]
Consider a family of smooth immersions $F(\cdot,t): M^n\to \mathbb{R}^{n+1}$ of closed hypersurfaces in $\mathbb{R}^{n+1}$ moving by the mean curvature flow $\frac{\partial F(p,t)}{\partial t} = -H(p,t)\cdot \nu(p,t)$, for $t\in [0,T)$. We prove that the
Brakke+26 more
core +4 more sources
Mean curvature flow and Riemannian submersions [PDF]
We give a sufficient condition ensuring that the mean curvature flow commutes with a Riemannian submersion and we use this result to create new examples of evolution by mean curvature flow.
Pipoli, Giuseppe
core +8 more sources
Universality in mean curvature flow neckpinches [PDF]
We study noncompact surfaces evolving by mean curvature flow. Without any symmetry assumptions, we prove that any solution that is $C^3$-close at some time to a standard neck will develop a neckpinch singularity in finite time, will become asymptotically
Gang, Zhou, Knopf, Dan
core +9 more sources
Width and mean curvature flow [PDF]
Given a Riemannian metric on a homotopy $n$-sphere, sweep it out by a continuous one-parameter family of closed curves starting and ending at point curves. Pull the sweepout tight by, in a continuous way, pulling each curve as tight as possible yet preserving the sweepout.
Tobias Colding, William P. Minicozzi
openalex +6 more sources
Forced hyperbolic mean curvature flow [PDF]
In this paper, we investigate two hyperbolic flows obtained by adding forcing terms in direction of the position vector to the hyperbolic mean curvature flows in \cite{klw,hdl}.
Mao, Jing
core +4 more sources