Results 91 to 100 of about 13,427 (268)
This study introduces an affordable machine learning platform for simultaneous dengue and zika detection using fluorine‐doped tin oxide thin films modified with gold nanoparticles and DNA aptamers. Designed for low‐cost, hardware‐limited devices (< $25), the model achieves 95.3% accuracy and uses only 9.4 kB of RAM, demonstrating viability for resource‐
Marina Ribeiro Batistuti Sawazaki +3 more
wiley +1 more source
Natural language processing to identify lupus nephritis phenotype in electronic health records
Background Systemic lupus erythematosus (SLE) is a rare autoimmune disorder characterized by an unpredictable course of flares and remission with diverse manifestations. Lupus nephritis, one of the major disease manifestations of SLE for organ damage and
Yu Deng +18 more
doaj +1 more source
Bayesian optimization enabled the design of PA56 system with just 8 wt% additives, achieving limiting oxygen index 30.5%, tensile strength 80.9 MPa, and UL‐94 V‐0 rating. Without prior knowledge, the algorithm uncovered synergistic effects between aluminum diethyl‐phosphinate and nanoclay.
Burcu Ozdemir +4 more
wiley +1 more source
Bacteria showcase remarkable metabolic diversity and traits, even among strains of the same species. In recent years, a large number of bacterial genomes have been sequenced, leading to the elucidation and documentation of genomic differences and ...
K. Jayanth Krishnan +5 more
doaj +1 more source
A novel machine learning approach classifies macrophage phenotypes with up to 98% accuracy using only nuclear morphology from DAPI‐stained images. Bypassing traditional surface markers, the method proves robust even on complex textured biomaterial surfaces. It offers a simpler, faster alternative for studying macrophage behavior in various experimental
Oleh Mezhenskyi +5 more
wiley +1 more source
Terrestrial laser scanning (TLS) is a promising technology for quantity checking huge grain stocks with low cost, light workload and high efficiency. Existing applications of TLS in bulk grain measurement and quantification lack the ability to capture complete structural information of grain bulks and thus will result in large errors. In this paper, we
Xingbo Hu +4 more
openaire +2 more sources
Electrospinning allows the fabrication of fibrous 3D cotton‐wool‐like scaffolds for tissue engineering. Optimizing this process traditionally relies on trial‐and‐error approaches, and artificial intelligence (AI)‐based tools can support it, with the prediction of fiber properties. This work uses machine learning to classify and predict the structure of
Paolo D’Elia +3 more
wiley +1 more source
A crystal graph neural network based on the attention mechanism is proposed in this work. The model dynamically weights features through the attention mechanism, enabling precise prediction of properties of material from structural features. Here, taking Janus III–VI van der Waals heterostructures as a representative case, the properties have been ...
Yudong Shi +7 more
wiley +1 more source
To integrate surface analysis into materials discovery workflows, Gaussian process regression is used to accurately predict surface compositions from rapidly acquired volume composition data (obtained by energy‐dispersive X‐ray spectroscopy), drastically reducing the number of required surface measurements on thin‐film materials libraries.
Felix Thelen +2 more
wiley +1 more source
Down-Streaming Impact to the Competitiveness of Indonesia Cocoa
The objective of this paper is to provide qualitative and quantitative analysis on the competitiveness of Indonesia cocoa beans post down-streaming push by the Government of Indonesia.
Irfan Nabhani
doaj +1 more source

