Results 191 to 200 of about 1,930,496 (336)

Advances in Thermal Modeling and Simulation of Lithium‐Ion Batteries with Machine Learning Approaches

open access: yesAdvanced Intelligent Discovery, EarlyView.
Heat generation in lithium‐ion batteries affects performance, aging, and safety, requiring accurate thermal modeling. Traditional methods face efficiency and adaptability challenges. This article reviews machine learning‐based and hybrid modeling approaches, integrating data and physics to improve parameter estimation and temperature prediction ...
Qi Lin   +4 more
wiley   +1 more source

Taguchi–Bayesian Sampling: A Roadmap for Polymer Database Construction Toward Small Representative Machine Learning

open access: yesAdvanced Intelligent Discovery, EarlyView.
This article establishes a Taguchi–Bayesian sampling strategy to reconstruct polymer processing–property landscape at minimal sampling cost, generically building the roadmap for materials database construction from sampling their vast design space. This sampling strategy is featured by an alternating lesson between uniformity and representativeness ...
Han Liu, Liantang Li
wiley   +1 more source

Harnessing Phase Dynamics Across Diverse Frequencies with Multifrequency Oscillatory Neural Networks

open access: yesAdvanced Intelligent Discovery, EarlyView.
Oscillatory Neural Networks (ONNs) are an emerging computing paradigm that encodes information in the phases of coupled oscillators. Traditionally, ONNs have been investigated using homogeneous frequency oscillators. However, physical hardware implementations are inherently subject to frequency mismatches, device variability, and nonuniformities.
Nil Dinç   +2 more
wiley   +1 more source

Accelerating Biosensor Discovery: A Computationally‐Driven Pipeline for Microplastics Monitoring

open access: yesAdvanced Intelligent Discovery, EarlyView.
A computationally guided pipeline unites molecular simulation, synthetic biology, electrochemical engineering, and machine learning to accelerate biosensor discovery. A Bacillus anthracis carbohydrate‐binding module is used to develop a high‐performance micro‐ and nanoplastics sensor with greatly reduced error and variability.
Gabriel X. Pereira   +13 more
wiley   +1 more source

Machine Learning‐Assisted Second‐Order Perturbation Theory for Chemical Potential Correction Toward Hubbard U Determination

open access: yesAdvanced Intelligent Discovery, EarlyView.
In this work, the Doubao large language model (LLM) is involved in the formula derivation processes for Hubbard U determination regarding the second‐order perturbations of the chemical potential. The core ML tool is optimized for physical domain knowledge, which is not limited to parameter prediction but rather serves as an interactive physical theory ...
Mingzi Sun   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy