Results 71 to 80 of about 13,427 (268)

Inverse Engineering of Mg Alloys Using Guided Oversampling and Semi‐Supervised Learning

open access: yesAdvanced Intelligent Discovery, EarlyView.
End‐to‐end design of engineering materials such as Mg alloys must include the properties, structure, and post‐synthesis processing methods. However, this is challenging when destructive mechanical testing is needed to annotate unseen data, and the processing methods for hypothetical alloys are unknown.
Amanda S. Barnard
wiley   +1 more source

Combining a Risk Factor Score Designed From Electronic Health Records With a Digital Cytology Image Scoring System to Improve Bladder Cancer Detection: Proof-of-Concept Study

open access: yesJournal of Medical Internet Research
BackgroundTo reduce the mortality related to bladder cancer, efforts need to be concentrated on early detection of the disease for more effective therapeutic intervention. Strong risk factors (eg, smoking status, age, professional
Sandie Cabon   +5 more
doaj   +1 more source

Information Dense and Industry Scalable Accelerated Formation

open access: yesAdvanced Intelligent Discovery, EarlyView.
Pulsed formation can reduce lithium‐ion battery formation time by over 50% while maintaining or enhancing performance. Validated on 25 Ah prismatic cells, this industry‐scalable method yields thinner, more homogeneous solid electrolyte interphases (SEIs).
Leon Merker   +3 more
wiley   +1 more source

Decoding Tattoo and Permanent Makeup Pigments: Linking Physicochemical Properties to Absorption, Distribution, Metabolism, and Elimination Profiles Using Quantitative Structure–Activity Relationship (QSAR)‐Based New Approach Methodologies (NAMs)

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study applies QSAR‐based new approach methodologies to 90 synthetic tattoo and permanent makeup pigments, revealing systemic links between their physicochemical properties and absorption, distribution, metabolism, and elimination profiles. The correlation‐driven analysis using SwissADME, ChemBCPP, and principal component analysis uncovers insights
Girija Bansod   +10 more
wiley   +1 more source

AI‐Enhanced Surface‐Enhanced Raman Scattering for Accurate and Sensitive Biomedical Sensing

open access: yesAdvanced Intelligent Discovery, EarlyView.
AI‐SERS advances spectral interpretation with greater precision and speed, enhancing molecular detection, biomedical analysis, and imaging. This review explores its essential contributions to biofluid analysis, disease identification, therapeutic agent evaluation, and high‐resolution biomedical imaging, aiding diagnostic decision‐making.
Seungki Lee, Rowoon Park, Ho Sang Jung
wiley   +1 more source

Evaluation of the musculoskeletal disorders and its risk factors in the workers of an agricultural equipment- manufacturing plant [PDF]

open access: yesطب کار, 2011
Background: Musculoskeletal disorders (MSDs) are caused by chronic and long-term exposure to ergonomic factors or by an acute injury. MSDs are the most important cause of work hour loss and medical costs in the workplace.
M Mostaghaci   +6 more
doaj   +2 more sources

Universally Accurate or Specifically Inadequate? Stress‐Testing General Purpose Machine Learning Interatomic Potentials

open access: yesAdvanced Intelligent Discovery, EarlyView.
We investigate MACE‐MP‐0 and M3GNet, two general‐purpose machine learning potentials, in materials discovery and find that both generally yield reliable predictions. At the same time, both potentials show a bias towards overstabilizing high energy metastable states. We deduce a metric to quantify when these potentials are safe to use.
Konstantin S. Jakob   +2 more
wiley   +1 more source

Automatically identifying social isolation from clinical narratives for patients with prostate Cancer

open access: yesBMC Medical Informatics and Decision Making, 2019
Background Social isolation is an important social determinant that impacts health outcomes and mortality among patients. The National Academy of Medicine recently recommended that social isolation be documented in electronic health records (EHR ...
Vivienne J Zhu   +5 more
doaj   +1 more source

What to Make and How to Make It: Combining Machine Learning and Statistical Learning to Design New Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley   +1 more source

Named Entity Recognition Models for Machine Learning Interatomic Potentials: A User‐Centric Approach to Knowledge Extraction from Scientific Literature

open access: yesAdvanced Intelligent Discovery, EarlyView.
Named entity recognition pipeline for knowledge extraction from scientific literature. Machine learning interatomic potential (MLIP) is an emerging technique that has helped achieve molecular dynamics simulations with unprecedented balance between efficiency and accuracy. Recently, the body of MLIP literature has been growing rapidly, which propels the
Bowen Zheng, Grace X. Gu
wiley   +1 more source

Home - About - Disclaimer - Privacy