Results 291 to 300 of about 5,542,649 (397)
Photoswitching Conduction in Framework Materials
This mini‐review summarizes recent advances in state‐of‐the‐art proton and electron conduction in framework materials that can be remotely and reversibly switched on and off by light. It discusses the various photoswitching conduction mechanisms and the strategies employed to enhance photoswitched conductivity.
Helmy Pacheco Hernandez +4 more
wiley +1 more source
Outcome and safety comparison of low-molecular-weight heparin versus unfractionated heparin for bridging anticoagulation in individuals with mechanical heart valves undergoing non-cardiac surgery: A systematic review and meta-analysis. [PDF]
Bhargah A +6 more
europepmc +1 more source
Simulation of Mechanical Heart Valve Dysfunction and the Non-Newtonian Blood Model Approach.
Chen A +5 more
europepmc +1 more source
Copper catalysts introduced with different non‐metallic elements regulating the coordination number of Cu are prepared by magnetron sputtering. Reducing the Cu coordination number enhances C─C coupling and boosts C2+ product selectivity, by lowering the energy barrier for the *CO → *CHO conversion step. The optimized Si‐doped Cu catalyst achieves a C2+
Xiaoye Du +8 more
wiley +1 more source
There is a significant need for biomaterials with well‐defined stability and bioactivity to support tissue regeneration. In this study, we developed a tunable microgel platform that enables the decoupling of stiffness from porosity, thereby promoting bone regeneration.
Silvia Pravato +9 more
wiley +1 more source
Backbone Heterojunction Photocatalysts for Efficient Sacrificial Hydrogen Production
Herein, a ‘single‐component’ organic semiconductor photocatalyst is presented in which a molecular donor is bonded to a polymer acceptor. The resultant material demonstrates exceptional photocatalytic activity for hydrogen evolution in aqueous triethylamine with an outstanding external quantum efficiency of 38% at 420 nm.
Richard J. Lyons +11 more
wiley +1 more source
A scalable one‐step copolymerization strategy is developed to produce low‐cost microporous ion exchange membranes that boost both the efficiency and lifespan of flow batteries. When combined with organic electrolytes in aqueous systems, these membranes enable safe and cheap flow battery energy storage, supporting the widespread integration of renewable
Jiaye Liu +7 more
wiley +1 more source

