Results 211 to 220 of about 1,446,577 (354)

Wear and mechanical properties of railroad bearing bronzes at different temperatures

open access: bronze, 1928
H.J. French   +3 more
openalex   +1 more source

Possible role of human ribonuclease dicer in the regulation of R loops

open access: yesFEBS Open Bio, EarlyView.
R loops play an important role in regulating key cellular processes such as replication, transcription, centromere stabilization, or control of telomere length. However, the unscheduled accumulation of R loops can cause many diseases, including cancer, and neurodegenerative or inflammatory disorders. Interestingly, accumulating data indicate a possible
Klaudia Wojcik   +2 more
wiley   +1 more source

Long non‐coding RNAs as therapeutic targets in head and neck squamous cell carcinoma and clinical application

open access: yesFEBS Open Bio, EarlyView.
Long non‐coding RNAs (lncRNAs) occupy an abundant fraction of the eukaryotic transcriptome and an emerging area in cancer research. Regulation by lncRNAs is based on their subcellular localization in HNSCC. This cartoon shows the various functions of lncRNAs in HNSCC discussed in this review.
Ellen T. Tran   +3 more
wiley   +1 more source

Short peptide perturbs spermatogenesis via immune microenvironment dysregulation and mitochondrial imbalance

open access: yesFEBS Open Bio, EarlyView.
In the blood–testis barrier, occludin is crucial for tight junctions. This study demonstrates that occludin‐targeting short peptides disrupt junction integrity, inducing immune cell infiltration, tumor necrosis factor‐α/interleukin‐6 secretion and mitochondrial dysfunction, ultimately triggering apoptosis.
Heng Wang, Xiaofang Tan, Deyu Chen
wiley   +1 more source

Construction of hyperthermostable d‐allulose 3‐epimerase from Arthrobacter globiformis M30 using the sequence information from Arthrobacter psychrolactophilus

open access: yesFEBS Open Bio, EarlyView.
d‐Allulose can be produced from d‐fructose by d‐allulose 3‐epimerase. Based on sequence homology information, we successfully engineered thermostable mutants with the protein engineering method. By integrating positive mutations, we constructed an enzyme that exhibits hyperthermostability without a loss in the activity.
Kensaku Shimada   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy