Results 271 to 280 of about 2,208,107 (416)

Cortical brain responses during passive nonpainful median nerve stimulation at low frequencies (0.5–4 Hz): An fMRI study [PDF]

open access: green, 2006
Antonio Ferretti   +6 more
openalex   +1 more source

Effects of Chemical Pressure on Superconductivity in Electrochemically Intercalated (TMA)yFe2(Se1−xSx)2 (TMA = Tetramethylammonium)

open access: yesAdvanced Functional Materials, EarlyView.
Intercalation of a series of FeSe1−xSx host crystals with tetramethylammonium cations (TMA+) linearly scales the critical temperature Tc from 43 K down to 28 K with increasing sulfur incorporation. The chemical pressure induced by the partial substitution shows a weakening of the superconducting properties in both hosts and intercalates in a remarkably
Nadine Lammer   +3 more
wiley   +1 more source

Bioorthogonal Engineering of Cellular Microenvironments Using Isonitrile Ligations

open access: yesAdvanced Functional Materials, EarlyView.
Highly selective chemistries are required for fabrication and post‐cross–linking modification of cell‐encapsulating hydrogels used in tissue engineering applications. Isonitrile ligation reactions represent a promising class of bioorthogonal chemistries for engineering hydrogel‐based cellular microenvironments. Isonitrile‐based hydrogels are stable and
Ping Zhou   +2 more
wiley   +1 more source

Biointerfacing with AgBiS2 Quantum Dots for Pseudocapacitive Photostimulation

open access: yesAdvanced Functional Materials, EarlyView.
It is demonstrated that AgBiS2 quantum dots exhibit unique photoinduced pseudocapacitive charge transfer properties, enabling efficient light‐to‐electrical energy conversion. These quantum dots facilitate enhanced light absorption and transduction when integrated with ZnO nanowires, which serve as an effective charge transport medium.
Ridvan Balamur   +8 more
wiley   +1 more source

Carbon Nanotube 3D Integrated Circuits: From Design to Applications

open access: yesAdvanced Functional Materials, EarlyView.
As Moore's law approaches its physical limits, carbon nanotube (CNT) 3D integrated circuits (ICs) emerge as a promising alternative due to the miniaturization, high mobility, and low power consumption. CNT 3D ICs in optoelectronics, memory, and monolithic ICs are reviewed while addressing challenges in fabrication, design, and integration.
Han‐Yang Liu   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy