Results 101 to 110 of about 10,487,514 (263)
Non-linear difference polynomials sharing a polynomial with finite weight
The uniqueness theory of meromorphic function mainly studies the conditions under which there exists only one function satisfying these conditions. The uniqueness theory of entire and meromorphic functions has grown up as an extensive sub-field of value ...
Harina Pandit Waghamore +1 more
doaj +1 more source
This paper considers the oscillation on meromorphic solutions of the second-order linear differential equations with the form f′′+A(z)f=0, where A(z) is a meromorphic function with [p,q]-order.
Hong-Yan Xu, Jin Tu, Zu-Xing Xuan
doaj +1 more source
Power of a meromorphic function that share a set with its derivative [PDF]
Bikash Chakraborty
openalex +1 more source
Growth of meromorphic solutions of higher-order linear differential equations
In this paper, we investigate the higher-order linear differential equations with meromorphic coefficients. We improve and extend a result of M.S. Liu and C.L.
Wenjuan Chen, Junfeng Xu
doaj +1 more source
Genus Two Meromorphic Conformal Field Theory
We construct the genus two (or two loop) partition function for meromorphic bosonic conformal field theories. We use a sewing procedure involving two genus one tori by exploiting an explicit relationship between the genus two period matrix and pinching ...
Tuite, Michael P.
core +2 more sources
Milnor fibrations of meromorphic functions [PDF]
Arnaud Bodin, Anne Pichon, José Seade
openalex +1 more source
Normality of Meromorphic Functions and Uniformly Discrete Exceptional Sets [PDF]
Jianming Chang
openalex +1 more source
Algebraic values of meromorphic functions—II
AbstractWe continue the study of the possible distributions of numbers at which certain meromorphic functions take on algebraic values. In particular, a 1-parameter subgroup of a linear group or an abelian variety which contains sufficiently many algebraic points must itself be an algebraic subgroup.
openaire +2 more sources
A uniqueness theorem for meromorphic functions
In this paper, we prove the uniqueness theorem for a special class of meromorphic functions on the complex plane $\mathbb{C}$. In particular, we study the class of meromorphic functions $f$ in the domain $\mathbb{C}\setminus K'$, where $K'$ is the finite
N. Sushchyk, D. Lukivska
doaj +1 more source
Some theorems on meromorphic functions [PDF]
In this paper we extend Theorems A and B. Let (5) F(z) = zk7 exp (H(z))f(z)/g(z) be any meromorphic function of finite order p. Here H(z) is a polynomial of degree h; f(z) and g(z) are canonical products of orders pi, P2 and genera p, q respectively. The genus of F(z) is P =max (p, q, h) and we have p-1
openaire +1 more source

