Results 11 to 20 of about 5,452 (168)
Canonical forms of oriented matroids
Abstract Positive geometries are semialgebraic sets equipped with a canonical differential form whose residues mirror the boundary structure of the geometry. Every full‐dimensional projective polytope is a positive geometry. Motivated by the canonical forms of polytopes, we construct a canonical form for any tope of an oriented matroid inside the Orlik–
Christopher Eur, Thomas Lam
wiley +1 more source
Module structure of Weyl algebras
Abstract The seminal paper (Stafford, J. Lond. Math. Soc. (2) 18 (1978), no. 3, 429–442) was a major step forward in our understanding of Weyl algebras. Beginning with Serre's Theorem on free summands of projective modules and Bass' Stable Range Theorem in commutative algebra, we attempt to trace the origins of this work and explain how it led to ...
Gwyn Bellamy
wiley +1 more source
SOME RESULTS ON VALUE DISTRIBUTION THEORY FOR MEROMORPHIC FUNCTION IN AN ANGULAR DOMAIN ASHOK RATHOD [PDF]
Ashok Rathod +43 more
openalex +1 more source
Interpolation with Meromorphic Matrix Functions [PDF]
A complete solution is given to a first-order pole-zero meromorphic matrix function interpolation problem on a closed Riemann surface. The solution to the interpolation problem is constructed from the solution to a natural linear homogeneous system.
Ball, Joseph A., Clancey, Kevin F.
openaire +1 more source
A survey of moment bounds for ζ(s)$\zeta (s)$: From Heath‐Brown's work to the present
Abstract In this expository article, we review some of the ideas behind the work of Heath–Brown (D. R. Heath‐Brown, J. London Math. Soc., (2), 24, (1981), no. 1, 65–78) on upper and lower bounds for moments of the Riemann zeta‐function, as well as the impact this work had on subsequent developments in the field.
Alexandra Florea
wiley +1 more source
From pathological to paradigmatic: A retrospective on Eremenko and Lyubich's entire functions
Abstract This paper surveys the impact of Eremenko and Lyubich's paper “Examples of entire functions with pathological dynamics”, published in 1987 in the Journal of the London Mathematical Society. Through a clever extension and use of classical approximation theorems, the authors constructed examples exhibiting behaviours previously unseen in ...
Núria Fagella, Leticia Pardo‐Simón
wiley +1 more source
Beyond the Hodge theorem: Curl and asymmetric pseudodifferential projections
Abstract We develop a new approach to the study of spectral asymmetry. Working with the operator curl:=∗d$\operatorname{curl}:={*}\mathrm{d}$ on a connected oriented closed Riemannian 3‐manifold, we construct, by means of microlocal analysis, the asymmetry operator — a scalar pseudodifferential operator of order −3$-3$.
Matteo Capoferri, Dmitri Vassiliev
wiley +1 more source
Meromorphic Functions and Smooth Analytic Functions [PDF]
Meromorphic functions with many zeroes can have logarithmic derivatives that are relatively smooth. We prove this, with a new construction of smooth analytic functions with many zeroes. Our examples belong to the theory of differential fields of functions.
openaire +1 more source
Abstract We consider a planar Coulomb gas ensemble of size N$N$ with the inverse temperature β=2$\beta =2$ and external potential Q(z)=|z|2−2clog|z−a|$Q(z)=|z|^2-2c \log |z-a|$, where c>0$c>0$ and a∈C$a \in \mathbb {C}$. Equivalently, this model can be realised as N$N$ eigenvalues of the complex Ginibre matrix of size (c+1)N×(c+1)N$(c+1) N \times (c+1)
Sung‐Soo Byun +2 more
wiley +1 more source
Fast and Slow Mixing of the Kawasaki Dynamics on Bounded‐Degree Graphs
ABSTRACT We study the worst‐case mixing time of the global Kawasaki dynamics for the fixed‐magnetization Ising model on the class of graphs of maximum degree Δ$$ \Delta $$. Proving a conjecture of Carlson, Davies, Kolla, and Perkins, we show that below the tree‐uniqueness threshold, the Kawasaki dynamics mix rapidly for all magnetizations. Disproving a
Aiya Kuchukova +3 more
wiley +1 more source

