Results 71 to 80 of about 10,487,514 (263)
A canonical system of differential equations arising from the Riemann zeta-function [PDF]
This paper has two main results, which relate to a criteria for the Riemann hypothesis via the family of functions $\Theta_\omega(z)=\xi(1/2-\omega-iz)/\xi(1/2+\omega-iz)$, where $\omega>0$ is a real parameter and $\xi(s)$ is the Riemann xi-function. The
Suzuki, Masatoshi
core
Properties of differences of meromorphic functions [PDF]
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Chen, Zong-Xuan, Shon, Kwang Ho
openaire +2 more sources
Topological K‐theory of quasi‐BPS categories for Higgs bundles
Abstract In a previous paper, we introduced quasi‐BPS categories for moduli stacks of semistable Higgs bundles. Under a certain condition on the rank, Euler characteristic, and weight, the quasi‐BPS categories (called BPS in this case) are noncommutative analogues of Hitchin integrable systems.
Tudor Pădurariu, Yukinobu Toda
wiley +1 more source
Previously, many works dealt with the study of the order differential subordination and shortly after that other studies dealt with the order differential subordination in the unit disc.
Suha J. Hammad +2 more
doaj +1 more source
Results on Meromorphic Functions Partially Sharing Some Values in an Angular Domain
By using the Tsuji characteristic of meromorphic function in an angular domain, we investigate two meromorphic functions partially sharing some values in an angle region, and obtain one main result and a series of corollaries that are improvements and ...
Hongyan Xu, Hua Wang
doaj +1 more source
Abstract We analyse and clarify the finite‐size scaling of the weakly‐coupled hierarchical n$n$‐component |φ|4$|\varphi |^4$ model for all integers n≥1$n \ge 1$ in all dimensions d≥4$d\ge 4$, for both free and periodic boundary conditions. For d>4$d>4$, we prove that for a volume of size Rd$R^{d}$ with periodic boundary conditions the infinite‐volume ...
Emmanuel Michta +2 more
wiley +1 more source
Holomorphic field theories and higher algebra
Abstract Aimed at complex geometers and representation theorists, this survey explores higher dimensional analogs of the rich interplay between Riemann surfaces, Virasoro and Kac‐Moody Lie algebras, and conformal blocks. We introduce a panoply of examples from physics — field theories that are holomorphic in nature, such as holomorphic Chern‐Simons ...
Owen Gwilliam, Brian R. Williams
wiley +1 more source
On real and imaginary roots of generalised Okamoto polynomials
Abstract Recently, B. Yang and J. Yang derived a family of rational solutions to the Sasa–Satsuma equation, and showed that any of its members constitutes a partial‐rogue wave provided that an associated generalised Okamoto polynomial has no real roots or no imaginary roots.
Pieter Roffelsen, Alexander Stokes
wiley +1 more source
Sets of Minimal Capacity and Extremal Domains [PDF]
Let f be a function meromorphic in a neighborhood of infinity. The central problem in the present investigation is to find the largest domain D \subset C to which the function f can be extended in a meromorphic and singlevalued manner. 'Large' means here
Stahl, Herbert R
core
Soft bounds for local triple products and the subconvexity‐QUE implication for GL2$\mathrm{GL}_2$
Abstract We give a soft proof of a uniform upper bound for the local factors in the triple product formula, sufficient for deducing effective and general forms of quantum unique ergodicity (QUE) from subconvexity.
Paul D. Nelson
wiley +1 more source

