Results 181 to 190 of about 259,517 (255)

Roadmap on Artificial Intelligence‐Augmented Additive Manufacturing

open access: yesAdvanced Intelligent Systems, EarlyView.
This Roadmap outlines the transformative role of artificial intelligence‐augmented additive manufacturing, highlighting advances in design, monitoring, and product development. By integrating tools such as generative design, computer vision, digital twins, and closed‐loop control, it presents pathways toward smart, scalable, and autonomous additive ...
Ali Zolfagharian   +37 more
wiley   +1 more source

RPSLearner: A Novel Approach Based on Random Projection and Deep Stacking Learning for Categorizing Non‐Small Cell Lung Cancer

open access: yesAdvanced Intelligent Systems, EarlyView.
Identifying non‐small cell lung cancer (NSCLC) subtypes is essential for precision cancer treatment. Conventional methods are laborious, or time‐consuming. To address these concerns, RPSLearner is proposed, which combines random projection and stacking ensemble learning for accurate NSCLC subtyping. RPSLearner outperforms state‐of‐the‐art approaches in
Xinchao Wu, Jieqiong Wang, Shibiao Wan
wiley   +1 more source

Review of Memristors for In‐Memory Computing and Spiking Neural Networks

open access: yesAdvanced Intelligent Systems, EarlyView.
Memristors uniquely enable energy‐efficient, brain‐inspired computing by acting as both memory and synaptic elements. This review highlights their physical mechanisms, integration in crossbar arrays, and role in spiking neural networks. Key challenges, including variability, relaxation, and stochastic switching, are discussed, alongside emerging ...
Mostafa Shooshtari   +2 more
wiley   +1 more source

Upsampling DINOv2 Features for Unsupervised Vision Tasks and Weakly Supervised Materials Segmentation

open access: yesAdvanced Intelligent Systems, EarlyView.
Feature from recent image foundation models (DINOv2) are useful for vision tasks (segmentation, object localization) with little or no human input. Once upsampled, they can be used for weakly supervised micrograph segmentation, achieving strong results when compared to classical features (blurs, edge detection) across a range of material systems.
Ronan Docherty   +2 more
wiley   +1 more source

Dual‐Scale Transformer Fusion With Meta Learning for Micro Metastasis Detection in Thyroid Cancer

open access: yesAdvanced Intelligent Systems, EarlyView.
A dual‐scale transformer model enhanced by meta‐learning enables accurate detection of tiny metastatic lesions in thyroid cancer. By combining cellular and tissue‐level features, the method outperforms existing models and shows strong adaptability to rare cases with limited data.
Jingtao Wang   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy