Results 161 to 170 of about 279,308 (307)

Zinc‐Containing Bioactive Glass Programs Macrophage Polarization through Extracellular Traps Regulation for Enhanced Diabetic Wound Healing

open access: yesAdvanced Healthcare Materials, EarlyView.
Zinc‐containing bioactive glass (ZnBG) promotes diabetic wound healing by regulating macrophage extracellular traps (METs). Specifically, ZnBG reduces oxidative stress and inhibits the PAD4 and NLRP3/caspase‐1/GSDMD signaling pathways, thereby suppressing MET formation.
RuiYang Sun   +11 more
wiley   +1 more source

Renal Tubular Acidosis Manifesting as Severe Metabolic Bone Disease. [PDF]

open access: yestouchREV Endocrinol, 2021
Boro H   +6 more
europepmc   +1 more source

Metabolic bone disease and hyperparathyroidism in an adult dog fed an unbalanced homemade diet [PDF]

open access: bronze, 2011
Adronie Verbrugghe   +6 more
openalex   +1 more source

Biofilm‐Antagonist Ginger‐Based 3D‐Printable Photoresins for Complex Implant Designs Exhibiting Advanced Multifunctional Biomedical Applications

open access: yesAdvanced Materials, EarlyView.
This work offers unique Ginger‐based 3D‐printable resins that can print customizable high‐resolution complex designs. The customizable printing backbone of Zingerol prints also mimics various human bones' strength. Acquisition of in‐vivo biocompatibility in rat model with no severe inflammatory response, along with in‐vitro antioxidant and ex‐vivo anti‐
Simran Jindal   +9 more
wiley   +1 more source

Rapid Fabrication of Self‐Propelled and Steerable Magnetic Microcatheters for Precision Medicine

open access: yesAdvanced Materials, EarlyView.
A rapid Joule heating fabrication method for the production of self‐propelling, adaptive microcatheters, with tunable stiffness and integrated microfluidic channels is presented. Demonstrated through three microrobotic designs, including a steerable guiding catheter, an untethered wave‐crawling TubeBot, and a distal‐end propelled microcatheter, it was ...
Zhi Chen   +5 more
wiley   +1 more source

The Space Within: How Architected Voids Promote Tissue Formation

open access: yesAdvanced Materials, EarlyView.
This review explores the role of void spaces in tissue engineering scaffolds and examines four key methods for introducing porosity into hydrogels at different scales. It discusses sacrificial templating, microgels, phase separation, and 3D printing, highlighting principles, advantages, and limitations. It also addresses emerging strategies integrating
Anna Puiggalí‐Jou   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy