PEDOT:PSS—A Key Material for Bioelectronics
PEDOT:PSS ‐ Poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate ‐ is typically processed from water dispersions to form multifunctional and multidimensional constructs with tunable electronic and ionic conductivity. Throught processing engineering, PEDOT:PSS is intergrated in bioelectronic devices that operate efficiently in physiological conditions
Alan Eduardo Ávila Ramírez +5 more
wiley +1 more source
Mitigation strategies for Li<sub>2</sub>CO<sub>3</sub> contamination in garnet-type solid-state electrolytes: formation mechanisms and interfacial engineering. [PDF]
Hao B +6 more
europepmc +1 more source
Ionic–Bionic Interfaces: Advancing Iontronic Strategies for Bioelectronic Sensing and Therapy
Ionic–bionic interfaces for bioelectronics leverage ions as multifunctional mediators that combine mechanical compliance, ionic and electronic functionalities, and therapeutic effects. These systems offer real‐time biosignal transduction, effective wound dressing, responsive drug delivery, and seamless interaction between soft tissues and electronic ...
Yun Goo Ro +6 more
wiley +1 more source
Self-charging organic flow batteries based on multivalent metal negative electrodes. [PDF]
Wang T +10 more
europepmc +1 more source
A Perspective on the Applications of Triphasic Gas Storage in Electrochemical Systems
Gas storage in microporous materials positioned locally at an electrode or electrocatalyst surface enhances electrochemical processes. Abstract Microporous materials store gases under dry conditions (e.g., hydrogen or oxygen via physisorption), but in some cases microporous materials also show triphasic (e.g., in a solid|gas|liquid system) gas storage ...
Zhongkai Li +9 more
wiley +1 more source
A scalable and long-cycle-life 600 Wh kg<sup>-1</sup> solid-state lithium metal pouch cell. [PDF]
Peng X +10 more
europepmc +1 more source
The Prussian Blue Analogue molecular magnet KMnFeHCF is demonstrated as a high‐performance cathode for ultra‐fast aqueous ammonium‐ion batteries. A full cell using KMnFeHCF and graphite delivers ~71 mAh g−1 at 1.25 A g−1 and ~51 mAh g−1 at 2.2 A g−1, retaining 50% capacity after 1850 cycles. Its scalability, cycling stability, and low cost offer strong
Nilasha Maiti +5 more
wiley +1 more source
Recent advances in Ti<sub>3</sub>C<sub>2</sub>T <sub><i>x</i></sub> -based electrolytes for battery applications. [PDF]
Tran Trieu NP +6 more
europepmc +1 more source
The Role of Ionic Liquids at the Biological Interfaces in Bioelectronics
Ionic liquids (ILs) are highlighted as key artificial ionic materials that bridge biological ion‐based signaling and electronic devices. By understanding their composition, structure, function relationships, and mechanisms, ILs can advance from high performance electrolyte to core materials enabling integrated, multifunctional bioelectronics for ...
Yeong‐sinn Ye +5 more
wiley +1 more source

