Results 71 to 80 of about 143,786 (229)

Recent Advances in Isolated Single-Atom Catalysts for Zinc Air Batteries: A Focus Review

open access: yesNanomaterials, 2019
Recently, zinc−air batteries (ZABs) have been receiving attention due to their theoretically high energy density, excellent safety, and the abundance of zinc resources.
Weimin Zhang   +3 more
doaj   +1 more source

Enabling Thin and Flexible Solid-State Composite Electrolytes by the Scalable Solution Process [PDF]

open access: yes, 2019
All solid-state batteries (ASSBs) have the potential to deliver higher energy densities, wider operating temperature range, and improved safety compared with today's liquid-electrolyte-based batteries. However, of the various solid-state electrolyte (SSE)
Banerjee, A   +10 more
core  

Solvent‐Free Bonding Mechanisms and Microstructure Engineering in Dry Electrode Technology for Lithium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Dry electrode technology revolutionizes battery manufacturing by eliminating toxic solvents and energy‐intensive drying. This work details two promising techniques: dry spray deposition and polymer fibrillation. How their unique solvent‐free bonding mechanisms create uniform microstructures for thicker, denser electrodes, boosting energy density and ...
Yuhao Liang   +7 more
wiley   +1 more source

Unraveling the Cationic and Anionic Redox Reactions in a Conventional Layered Oxide Cathode [PDF]

open access: yes, 2019
Increasing interest in high-energy lithium-ion batteries has triggered the demand to clarify the reaction mechanism in battery cathodes during high-potential operation.
Li, N   +6 more
core   +1 more source

Molecular Cross‐Linking of MXenes: Tunable Interfaces and Chemiresistive Sensing

open access: yesAdvanced Functional Materials, EarlyView.
In this study, Ti3C2Tx MXenes are initially functionalized using oleylamine ligands to form stable dispersions in an organic solvent. Subsequently ligand exchange with α,ω‐diaminoalkanes enables cross‐linking, along with precise tuning of interfaces. This structural control translates into tunable charge transport and responsive VOC sensing, showing ...
Yudhajit Bhattacharjee   +12 more
wiley   +1 more source

‘Oxygen Bound to Magnesium’ as High Voltage Redox Center Causes Sloping of the Potential Profile in Mg‐Doped Layered Oxides for Na‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Na‐ion batteries ‐ Impact of doping on the oxygen redox: The sloping potential of NaMg0.1Ni0.4Mn0.5O2 above 4.0 V is caused by a new redox center (arising from the ‘O bound to Mg’), having a higher potential but being more irreversible compared to the ‘O bound to Ni’.
Yongchun Li   +12 more
wiley   +1 more source

Molten air—A new class of high capacity batteries

open access: yesInvention Disclosure
The present invention relates to rechargeable electrochemical battery cells (molten air batteries). The cells use air and a molten electrolyte, are quasi-reversible (rechargeable) and have the capacity for multiple electrons stored per molecule, have ...
Stuart Licht
doaj   +1 more source

How Voltage Drops are Manifested by Lithium Ion Configurations at Interfaces and in Thin Films on Battery Electrodes

open access: yes, 2015
Battery electrode surfaces are generally coated with electronically insulating solid films of thickness 1-50 nm. Both electrons and Li+ can move at the electrode-surface film interface in response to the voltage, which adds complexity to the "electric ...
Leenheer, Andrew, Leung, Kevin
core   +2 more sources

Tuning the Electronic Structure and Spin State of Fe─N─C Catalysts Using an Axial Oxygen Ligand and Fe Clusters for High‐Efficiency Rechargeable Zinc–Air Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A FeN4─O/Clu@NC‐0.1Ac catalyst containing atomically‐dispersed FeN4─O sites (medium‐spin Fe2+) and Fe clusters delivered a half‐wave potential of 0.89 V for ORR and an overpotential of 330 mV at 10 mA cm−2 for OER in 0.1 m KOH. When the catalyst was used in a rechargeable Zn–air battery, a power density of 284.5 mW cm−2 was achieved with excellent ...
Yongfang Zhou   +8 more
wiley   +1 more source

Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc–Air Batteries

open access: yesNano-Micro Letters
Highlights The recent advances in non-noble-metal bifunctional electrocatalysts for zinc–air batteries are summarized with the design principles. The working mechanism are discussed to provide a comprehensive understanding of the structure-performance ...
Yunnan Gao   +12 more
doaj   +1 more source

Home - About - Disclaimer - Privacy